ebiten/internal/graphicsdriver/directx/pipeline_windows.go

706 lines
21 KiB
Go

// Copyright 2022 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package directx
import (
"fmt"
"math"
"unsafe"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
)
const numDescriptorsPerFrame = 256
func operationToBlend(c graphicsdriver.Operation, alpha bool) _D3D12_BLEND {
switch c {
case graphicsdriver.Zero:
return _D3D12_BLEND_ZERO
case graphicsdriver.One:
return _D3D12_BLEND_ONE
case graphicsdriver.SrcAlpha:
return _D3D12_BLEND_SRC_ALPHA
case graphicsdriver.DstAlpha:
return _D3D12_BLEND_DEST_ALPHA
case graphicsdriver.OneMinusSrcAlpha:
return _D3D12_BLEND_INV_SRC_ALPHA
case graphicsdriver.OneMinusDstAlpha:
return _D3D12_BLEND_INV_DEST_ALPHA
case graphicsdriver.DstColor:
if alpha {
return _D3D12_BLEND_DEST_ALPHA
}
return _D3D12_BLEND_DEST_COLOR
default:
panic(fmt.Sprintf("directx: invalid operation: %d", c))
}
}
type builtinPipelineStatesKey struct {
useColorM bool
compositeMode graphicsdriver.CompositeMode
filter graphicsdriver.Filter
address graphicsdriver.Address
stencilMode stencilMode
screen bool
}
func (k *builtinPipelineStatesKey) defs() ([]_D3D_SHADER_MACRO, error) {
var defs []_D3D_SHADER_MACRO
defval := []byte("1\x00")
if k.useColorM {
name := []byte("USE_COLOR_MATRIX\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
}
switch k.filter {
case graphicsdriver.FilterNearest:
name := []byte("FILTER_NEAREST\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
case graphicsdriver.FilterLinear:
name := []byte("FILTER_LINEAR\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
case graphicsdriver.FilterScreen:
name := []byte("FILTER_SCREEN\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
default:
return nil, fmt.Errorf("directx: invalid filter: %d", k.filter)
}
switch k.address {
case graphicsdriver.AddressUnsafe:
name := []byte("ADDRESS_UNSAFE\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
case graphicsdriver.AddressClampToZero:
name := []byte("ADDRESS_CLAMP_TO_ZERO\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
case graphicsdriver.AddressRepeat:
name := []byte("ADDRESS_REPEAT\x00")
defs = append(defs, _D3D_SHADER_MACRO{&name[0], &defval[0]})
default:
return nil, fmt.Errorf("directx: invalid address: %d", k.address)
}
// Termination
defs = append(defs, _D3D_SHADER_MACRO{})
return defs, nil
}
func (k *builtinPipelineStatesKey) source() []byte {
return []byte(`struct PSInput {
float4 position : SV_POSITION;
float2 texcoord : TEXCOORD0;
float4 color : COLOR;
};
cbuffer ShaderParameter : register(b0) {
float2 viewport_size;
float2 source_size;
float4x4 color_matrix_body;
float4 color_matrix_translation;
float4 source_region;
// This member should be the last not to create a new sector.
// https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules
float scale;
}
PSInput VSMain(float2 position : POSITION, float2 tex : TEXCOORD, float4 color : COLOR) {
// In DirectX, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't
// match. Then, the Y direction must be inverted.
float4x4 projectionMatrix = {
2.0 / viewport_size.x, 0, 0, -1,
0, -2.0 / viewport_size.y, 0, 1,
0, 0, 1, 0,
0, 0, 0, 1,
};
PSInput result;
result.position = mul(projectionMatrix, float4(position, 0, 1));
result.texcoord = tex;
result.color = float4(color.rgb, 1) * color.a;
return result;
}
Texture2D tex : register(t0);
SamplerState samp : register(s0);
float euclideanMod(float x, float y) {
// Assume that y is always positive.
return x - y * floor(x/y);
}
float2 adjustTexelByAddress(float2 p, float4 source_region) {
#if defined(ADDRESS_CLAMP_TO_ZERO)
return p;
#endif
#if defined(ADDRESS_REPEAT)
float2 o = float2(source_region[0], source_region[1]);
float2 size = float2(source_region[2] - source_region[0], source_region[3] - source_region[1]);
return float2(euclideanMod((p.x - o.x), size.x) + o.x, euclideanMod((p.y - o.y), size.y) + o.y);
#endif
#if defined(ADDRESS_UNSAFE)
return p;
#endif
}
float4 PSMain(PSInput input) : SV_TARGET {
#if defined(FILTER_NEAREST)
# if defined(ADDRESS_UNSAFE)
float4 color = tex.Sample(samp, input.texcoord);
# else
float4 color;
float2 pos = adjustTexelByAddress(input.texcoord, source_region);
if (source_region[0] <= pos.x &&
source_region[1] <= pos.y &&
pos.x < source_region[2] &&
pos.y < source_region[3]) {
color = tex.Sample(samp, pos);
} else {
color = float4(0, 0, 0, 0);
}
# endif // defined(ADDRESS_UNSAFE)
#endif // defined(FILTER_NEAREST)
#if defined(FILTER_LINEAR)
float2 pos = input.texcoord;
float2 texel_size = 1.0 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue.
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
float2 p0 = pos - (texel_size) / 2.0 + (texel_size / 512.0);
float2 p1 = pos + (texel_size) / 2.0 + (texel_size / 512.0);
# if !defined(ADDRESS_UNSAFE)
p0 = adjustTexelByAddress(p0, source_region);
p1 = adjustTexelByAddress(p1, source_region);
# endif // !defined(ADDRESS_UNSAFE)
float4 c0 = tex.Sample(samp, p0);
float4 c1 = tex.Sample(samp, float2(p1.x, p0.y));
float4 c2 = tex.Sample(samp, float2(p0.x, p1.y));
float4 c3 = tex.Sample(samp, p1);
# if !defined(ADDRESS_UNSAFE)
if (p0.x < source_region[0]) {
c0 = float4(0, 0, 0, 0);
c2 = float4(0, 0, 0, 0);
}
if (p0.y < source_region[1]) {
c0 = float4(0, 0, 0, 0);
c1 = float4(0, 0, 0, 0);
}
if (source_region[2] <= p1.x) {
c1 = float4(0, 0, 0, 0);
c3 = float4(0, 0, 0, 0);
}
if (source_region[3] <= p1.y) {
c2 = float4(0, 0, 0, 0);
c3 = float4(0, 0, 0, 0);
}
# endif // !defined(ADDRESS_UNSAFE)
float2 rate = frac(p0 * source_size);
float4 color = lerp(lerp(c0, c1, rate.x), lerp(c2, c3, rate.x), rate.y);
#endif // defined(FILTER_LINEAR)
#if defined(FILTER_SCREEN)
float2 pos = input.texcoord;
float2 texel_size = 1.0 / source_size;
float2 half_scaled_texel_size = texel_size / 2.0 / scale;
float2 p0 = pos - half_scaled_texel_size + (texel_size / 512.0);
float2 p1 = pos + half_scaled_texel_size + (texel_size / 512.0);
float4 c0 = tex.Sample(samp, p0);
float4 c1 = tex.Sample(samp, float2(p1.x, p0.y));
float4 c2 = tex.Sample(samp, float2(p0.x, p1.y));
float4 c3 = tex.Sample(samp, p1);
// Texels must be in the source rect, so it is not necessary to check that like linear filter.
float2 rate_center = float2(1.0, 1.0) - half_scaled_texel_size;
float2 rate = clamp(((frac(p0 * source_size) - rate_center) * scale) + rate_center, 0.0, 1.0);
float4 color = lerp(lerp(c0, c1, rate.x), lerp(c2, c3, rate.x), rate.y);
#endif // defined(FILTER_SCREEN)
#if defined(USE_COLOR_MATRIX)
// Un-premultiply alpha.
// When the alpha is 0, 1.0 - sign(alpha) is 1.0, which means division does nothing.
color.rgb /= color.a + (1.0 - sign(color.a));
// Apply the color matrix or scale.
color = mul(color_matrix_body, color) + color_matrix_translation;
// Premultiply alpha
color.rgb *= color.a;
// Apply color scale.
color *= input.color;
// Clamp the output.
color.rgb = min(color.rgb, color.a);
return color;
#elif defined(FILTER_SCREEN)
return color;
#else
return input.color * color;
#endif // defined(USE_COLOR_MATRIX)
}`)
}
type pipelineStates struct {
rootSignature *_ID3D12RootSignature
cache map[builtinPipelineStatesKey]*_ID3D12PipelineState
// builtinShaders is a set of the built-in vertex/pixel shaders that are never released.
builtinShaders []*_ID3DBlob
shaderDescriptorHeap *_ID3D12DescriptorHeap
shaderDescriptorSize uint32
samplerDescriptorHeap *_ID3D12DescriptorHeap
constantBuffers [frameCount][]*_ID3D12Resource
}
const numConstantBufferAndSourceTextures = 1 + graphics.ShaderImageNum
func (p *pipelineStates) initialize(device *_ID3D12Device) (ferr error) {
// Create a CBV/SRV/UAV descriptor heap.
// 5n+0: constants
// 5n+m (1<=4): textures
shaderH, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV,
NumDescriptors: frameCount * numDescriptorsPerFrame * numConstantBufferAndSourceTextures,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE,
NodeMask: 0,
})
if err != nil {
return err
}
p.shaderDescriptorHeap = shaderH
defer func() {
if ferr != nil {
p.shaderDescriptorHeap.Release()
p.shaderDescriptorHeap = nil
}
}()
p.shaderDescriptorSize = device.GetDescriptorHandleIncrementSize(_D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV)
samplerH, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER,
NumDescriptors: 1,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE,
NodeMask: 0,
})
if err != nil {
return err
}
p.samplerDescriptorHeap = samplerH
h, err := p.samplerDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
device.CreateSampler(&_D3D12_SAMPLER_DESC{
Filter: _D3D12_FILTER_MIN_MAG_MIP_POINT,
AddressU: _D3D12_TEXTURE_ADDRESS_MODE_WRAP,
AddressV: _D3D12_TEXTURE_ADDRESS_MODE_WRAP,
AddressW: _D3D12_TEXTURE_ADDRESS_MODE_WRAP,
ComparisonFunc: _D3D12_COMPARISON_FUNC_NEVER,
MinLOD: -math.MaxFloat32,
MaxLOD: math.MaxFloat32,
}, h)
return nil
}
func (p *pipelineStates) builtinGraphicsPipelineState(device *_ID3D12Device, key builtinPipelineStatesKey) (*_ID3D12PipelineState, error) {
state, ok := p.cache[key]
if ok {
return state, nil
}
defs, err := key.defs()
if err != nil {
return nil, err
}
vsh, psh, err := newShader(key.source(), defs)
if err != nil {
return nil, err
}
// Keep the shaders. These are never released.
p.builtinShaders = append(p.builtinShaders, vsh, psh)
s, err := p.newPipelineState(device, vsh, psh, key.compositeMode, key.stencilMode, key.screen)
if err != nil {
return nil, err
}
if p.cache == nil {
p.cache = map[builtinPipelineStatesKey]*_ID3D12PipelineState{}
}
p.cache[key] = s
return s, nil
}
func (p *pipelineStates) useGraphicsPipelineState(device *_ID3D12Device, commandList *_ID3D12GraphicsCommandList, frameIndex int, pipelineState *_ID3D12PipelineState, srcs [graphics.ShaderImageNum]*Image, uniforms []float32) error {
idx := len(p.constantBuffers[frameIndex])
if idx >= numDescriptorsPerFrame*2 {
return fmt.Errorf("directx: too many constant buffers")
}
if cap(p.constantBuffers[frameIndex]) > idx {
p.constantBuffers[frameIndex] = p.constantBuffers[frameIndex][:idx+1]
} else {
p.constantBuffers[frameIndex] = append(p.constantBuffers[frameIndex], nil)
}
const bufferSizeAlignement = 256
bufferSize := uint32(unsafe.Sizeof(float32(0))) * uint32(len(uniforms))
if bufferSize > 0 {
bufferSize = ((bufferSize-1)/bufferSizeAlignement + 1) * bufferSizeAlignement
}
cb := p.constantBuffers[frameIndex][idx]
if cb != nil {
if uint32(cb.GetDesc().Width) < bufferSize {
p.constantBuffers[frameIndex][idx].Release()
p.constantBuffers[frameIndex][idx] = nil
cb = nil
}
}
if cb == nil {
var err error
cb, err = createBuffer(device, uint64(bufferSize), _D3D12_HEAP_TYPE_UPLOAD)
if err != nil {
return err
}
p.constantBuffers[frameIndex][idx] = cb
h, err := p.shaderDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
h.Offset(int32(frameIndex*numDescriptorsPerFrame+numConstantBufferAndSourceTextures*idx), p.shaderDescriptorSize)
device.CreateConstantBufferView(&_D3D12_CONSTANT_BUFFER_VIEW_DESC{
BufferLocation: cb.GetGPUVirtualAddress(),
SizeInBytes: bufferSize,
}, h)
}
h, err := p.shaderDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
h.Offset(int32(frameIndex*numDescriptorsPerFrame+numConstantBufferAndSourceTextures*idx), p.shaderDescriptorSize)
for _, src := range srcs {
h.Offset(1, p.shaderDescriptorSize)
if src == nil {
continue
}
device.CreateShaderResourceView(src.resource(), &_D3D12_SHADER_RESOURCE_VIEW_DESC{
Format: _DXGI_FORMAT_R8G8B8A8_UNORM,
ViewDimension: _D3D12_SRV_DIMENSION_TEXTURE2D,
Shader4ComponentMapping: _D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING,
Texture2D: _D3D12_TEX2D_SRV{
MipLevels: 1,
},
}, h)
}
// Update the constant buffer.
m, err := cb.Map(0, &_D3D12_RANGE{0, 0})
if err != nil {
return err
}
copyFloat32s(m, uniforms)
cb.Unmap(0, nil)
commandList.SetPipelineState(pipelineState)
rs, err := p.ensureRootSignature(device)
if err != nil {
return err
}
commandList.SetGraphicsRootSignature(rs)
commandList.SetDescriptorHeaps([]*_ID3D12DescriptorHeap{
p.shaderDescriptorHeap,
p.samplerDescriptorHeap,
})
// Match the indices with rootParams in graphicsPipelineState.
gh, err := p.shaderDescriptorHeap.GetGPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
gh.Offset(int32(frameIndex*numDescriptorsPerFrame+numConstantBufferAndSourceTextures*idx), p.shaderDescriptorSize)
commandList.SetGraphicsRootDescriptorTable(0, gh)
gh.Offset(1, p.shaderDescriptorSize)
commandList.SetGraphicsRootDescriptorTable(1, gh)
sh, err := p.samplerDescriptorHeap.GetGPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
commandList.SetGraphicsRootDescriptorTable(2, sh)
return nil
}
func (p *pipelineStates) ensureRootSignature(device *_ID3D12Device) (rootSignature *_ID3D12RootSignature, ferr error) {
if p.rootSignature != nil {
return p.rootSignature, nil
}
cbv := _D3D12_DESCRIPTOR_RANGE{
RangeType: _D3D12_DESCRIPTOR_RANGE_TYPE_CBV, // b0
NumDescriptors: 1,
BaseShaderRegister: 0,
RegisterSpace: 0,
OffsetInDescriptorsFromTableStart: _D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND,
}
srv := _D3D12_DESCRIPTOR_RANGE{
RangeType: _D3D12_DESCRIPTOR_RANGE_TYPE_SRV, // t0
NumDescriptors: graphics.ShaderImageNum,
BaseShaderRegister: 0,
RegisterSpace: 0,
OffsetInDescriptorsFromTableStart: _D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND,
}
sampler := _D3D12_DESCRIPTOR_RANGE{
RangeType: _D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, // s0
NumDescriptors: 1,
BaseShaderRegister: 0,
RegisterSpace: 0,
OffsetInDescriptorsFromTableStart: _D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND,
}
rootParams := [...]_D3D12_ROOT_PARAMETER{
{
ParameterType: _D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE,
DescriptorTable: _D3D12_ROOT_DESCRIPTOR_TABLE{
NumDescriptorRanges: 1,
pDescriptorRanges: &cbv,
},
ShaderVisibility: _D3D12_SHADER_VISIBILITY_ALL,
},
{
ParameterType: _D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE,
DescriptorTable: _D3D12_ROOT_DESCRIPTOR_TABLE{
NumDescriptorRanges: 1,
pDescriptorRanges: &srv,
},
ShaderVisibility: _D3D12_SHADER_VISIBILITY_PIXEL,
},
{
ParameterType: _D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE,
DescriptorTable: _D3D12_ROOT_DESCRIPTOR_TABLE{
NumDescriptorRanges: 1,
pDescriptorRanges: &sampler,
},
ShaderVisibility: _D3D12_SHADER_VISIBILITY_PIXEL,
},
}
// Create a root signature.
sig, err := _D3D12SerializeRootSignature(&_D3D12_ROOT_SIGNATURE_DESC{
NumParameters: uint32(len(rootParams)),
pParameters: &rootParams[0],
NumStaticSamplers: 0,
pStaticSamplers: nil,
Flags: _D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT,
}, _D3D_ROOT_SIGNATURE_VERSION_1_0)
if err != nil {
return nil, err
}
defer sig.Release()
rs, err := device.CreateRootSignature(0, sig.GetBufferPointer(), sig.GetBufferSize())
if err != nil {
return nil, err
}
defer func() {
if ferr != nil {
rootSignature.Release()
}
}()
p.rootSignature = rs
return p.rootSignature, nil
}
func newShader(source []byte, defs []_D3D_SHADER_MACRO) (vsh, psh *_ID3DBlob, ferr error) {
// Create a shader
v, err := _D3DCompile(source, "shader", defs, nil, "VSMain", "vs_5_0", 0, 0)
if err != nil {
return nil, nil, err
}
defer func() {
if ferr != nil {
v.Release()
}
}()
p, err := _D3DCompile(source, "shader", defs, nil, "PSMain", "ps_5_0", 0, 0)
if err != nil {
return nil, nil, err
}
defer func() {
if ferr != nil {
p.Release()
}
}()
return v, p, nil
}
func (p *pipelineStates) newPipelineState(device *_ID3D12Device, vsh, psh *_ID3DBlob, compositeMode graphicsdriver.CompositeMode, stencilMode stencilMode, screen bool) (state *_ID3D12PipelineState, ferr error) {
rootSignature, err := p.ensureRootSignature(device)
if err != nil {
return nil, err
}
defer func() {
if ferr != nil {
rootSignature.Release()
}
}()
depthStencilDesc := _D3D12_DEPTH_STENCIL_DESC{
DepthEnable: 0,
DepthWriteMask: _D3D12_DEPTH_WRITE_MASK_ALL,
DepthFunc: _D3D12_COMPARISON_FUNC_LESS,
StencilEnable: 0,
StencilReadMask: _D3D12_DEFAULT_STENCIL_READ_MASK,
StencilWriteMask: _D3D12_DEFAULT_STENCIL_WRITE_MASK,
FrontFace: _D3D12_DEPTH_STENCILOP_DESC{
StencilFailOp: _D3D12_STENCIL_OP_KEEP,
StencilDepthFailOp: _D3D12_STENCIL_OP_KEEP,
StencilPassOp: _D3D12_STENCIL_OP_KEEP,
StencilFunc: _D3D12_COMPARISON_FUNC_ALWAYS,
},
BackFace: _D3D12_DEPTH_STENCILOP_DESC{
StencilFailOp: _D3D12_STENCIL_OP_KEEP,
StencilDepthFailOp: _D3D12_STENCIL_OP_KEEP,
StencilPassOp: _D3D12_STENCIL_OP_KEEP,
StencilFunc: _D3D12_COMPARISON_FUNC_ALWAYS,
},
}
writeMask := uint8(_D3D12_COLOR_WRITE_ENABLE_ALL)
switch stencilMode {
case prepareStencil:
depthStencilDesc.StencilEnable = 1
depthStencilDesc.FrontFace.StencilPassOp = _D3D12_STENCIL_OP_INVERT
depthStencilDesc.BackFace.StencilPassOp = _D3D12_STENCIL_OP_INVERT
writeMask = 0
case drawWithStencil:
depthStencilDesc.StencilEnable = 1
depthStencilDesc.FrontFace.StencilFunc = _D3D12_COMPARISON_FUNC_NOT_EQUAL
depthStencilDesc.BackFace.StencilFunc = _D3D12_COMPARISON_FUNC_NOT_EQUAL
}
rtvFormat := _DXGI_FORMAT_R8G8B8A8_UNORM
if screen {
rtvFormat = _DXGI_FORMAT_B8G8R8A8_UNORM
}
dsvFormat := _DXGI_FORMAT_UNKNOWN
if stencilMode != noStencil {
dsvFormat = _DXGI_FORMAT_D24_UNORM_S8_UINT
}
// Create a pipeline state.
srcOp, dstOp := compositeMode.Operations()
psoDesc := _D3D12_GRAPHICS_PIPELINE_STATE_DESC{
pRootSignature: rootSignature,
VS: _D3D12_SHADER_BYTECODE{
pShaderBytecode: vsh.GetBufferPointer(),
BytecodeLength: vsh.GetBufferSize(),
},
PS: _D3D12_SHADER_BYTECODE{
pShaderBytecode: psh.GetBufferPointer(),
BytecodeLength: psh.GetBufferSize(),
},
BlendState: _D3D12_BLEND_DESC{
AlphaToCoverageEnable: 0,
IndependentBlendEnable: 0,
RenderTarget: [8]_D3D12_RENDER_TARGET_BLEND_DESC{
{
BlendEnable: 1,
LogicOpEnable: 0,
SrcBlend: operationToBlend(srcOp, false),
DestBlend: operationToBlend(dstOp, false),
BlendOp: _D3D12_BLEND_OP_ADD,
SrcBlendAlpha: operationToBlend(srcOp, true),
DestBlendAlpha: operationToBlend(dstOp, true),
BlendOpAlpha: _D3D12_BLEND_OP_ADD,
LogicOp: _D3D12_LOGIC_OP_NOOP,
RenderTargetWriteMask: writeMask,
},
},
},
SampleMask: math.MaxUint32,
RasterizerState: _D3D12_RASTERIZER_DESC{
FillMode: _D3D12_FILL_MODE_SOLID,
CullMode: _D3D12_CULL_MODE_NONE,
FrontCounterClockwise: 0,
DepthBias: _D3D12_DEFAULT_DEPTH_BIAS,
DepthBiasClamp: _D3D12_DEFAULT_DEPTH_BIAS_CLAMP,
SlopeScaledDepthBias: _D3D12_DEFAULT_SLOPE_SCALED_DEPTH_BIAS,
DepthClipEnable: 0,
MultisampleEnable: 0,
AntialiasedLineEnable: 0,
ForcedSampleCount: 0,
ConservativeRaster: _D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF,
},
DepthStencilState: depthStencilDesc,
InputLayout: _D3D12_INPUT_LAYOUT_DESC{
pInputElementDescs: &inputElementDescs[0],
NumElements: uint32(len(inputElementDescs)),
},
PrimitiveTopologyType: _D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
NumRenderTargets: 1,
RTVFormats: [8]_DXGI_FORMAT{
rtvFormat,
},
DSVFormat: dsvFormat,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
}
s, err := device.CreateGraphicsPipelineState(&psoDesc)
if err != nil {
return nil, err
}
return s, nil
}
func (p *pipelineStates) releaseConstantBuffers(frameIndex int) {
for i := range p.constantBuffers[frameIndex] {
p.constantBuffers[frameIndex][i].Release()
p.constantBuffers[frameIndex][i] = nil
}
p.constantBuffers[frameIndex] = p.constantBuffers[frameIndex][:0]
}
func (p *pipelineStates) resetConstantBuffers(frameIndex int) {
p.constantBuffers[frameIndex] = p.constantBuffers[frameIndex][:0]
}