ebiten/internal/graphicsdriver/metal/graphics_darwin.go

1293 lines
38 KiB
Go

// Copyright 2018 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metal
import (
"fmt"
"math"
"sort"
"strings"
"unsafe"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/ca"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/mtl"
"github.com/hajimehoshi/ebiten/v2/internal/shaderir"
)
// #cgo CFLAGS: -x objective-c
// #cgo !ios CFLAGS: -mmacosx-version-min=10.12
// #cgo LDFLAGS: -framework Foundation
//
// #import <Foundation/Foundation.h>
//
// static void* allocAutoreleasePool() {
// return [[NSAutoreleasePool alloc] init];
// }
//
// static void releaseAutoreleasePool(void* pool) {
// [(NSAutoreleasePool*)pool release];
// }
import "C"
const source = `#include <metal_stdlib>
#define FILTER_NEAREST {{.FilterNearest}}
#define FILTER_LINEAR {{.FilterLinear}}
#define FILTER_SCREEN {{.FilterScreen}}
#define ADDRESS_CLAMP_TO_ZERO {{.AddressClampToZero}}
#define ADDRESS_REPEAT {{.AddressRepeat}}
#define ADDRESS_UNSAFE {{.AddressUnsafe}}
using namespace metal;
struct VertexIn {
packed_float2 position;
packed_float2 tex;
packed_float4 color;
};
struct VertexOut {
float4 position [[position]];
float2 tex;
float4 color;
};
vertex VertexOut VertexShader(
uint vid [[vertex_id]],
const device VertexIn* vertices [[buffer(0)]],
constant float2& viewport_size [[buffer(1)]]
) {
float4x4 projectionMatrix = float4x4(
float4(2.0 / viewport_size.x, 0, 0, 0),
float4(0, 2.0 / viewport_size.y, 0, 0),
float4(0, 0, 1, 0),
float4(-1, -1, 0, 1)
);
VertexIn in = vertices[vid];
VertexOut out = {
.position = projectionMatrix * float4(in.position, 0, 1),
.tex = in.tex,
.color = in.color,
};
return out;
}
float FloorMod(float x, float y) {
if (x < 0.0) {
return y - (-x - y * floor(-x/y));
}
return x - y * floor(x/y);
}
template<uint8_t address>
float2 AdjustTexelByAddress(float2 p, float4 source_region);
template<>
inline float2 AdjustTexelByAddress<ADDRESS_CLAMP_TO_ZERO>(float2 p, float4 source_region) {
return p;
}
template<>
inline float2 AdjustTexelByAddress<ADDRESS_REPEAT>(float2 p, float4 source_region) {
float2 o = float2(source_region[0], source_region[1]);
float2 size = float2(source_region[2] - source_region[0], source_region[3] - source_region[1]);
return float2(FloorMod((p.x - o.x), size.x) + o.x, FloorMod((p.y - o.y), size.y) + o.y);
}
template<uint8_t filter, uint8_t address>
struct ColorFromTexel;
constexpr sampler texture_sampler{filter::nearest};
template<>
struct ColorFromTexel<FILTER_NEAREST, ADDRESS_UNSAFE> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
float2 p = v.tex;
return texture.sample(texture_sampler, p);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_NEAREST, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
float2 p = AdjustTexelByAddress<address>(v.tex, source_region);
if (source_region[0] <= p.x &&
source_region[1] <= p.y &&
p.x < source_region[2] &&
p.y < source_region[3]) {
return texture.sample(texture_sampler, p);
}
return 0.0;
}
};
template<>
struct ColorFromTexel<FILTER_LINEAR, ADDRESS_UNSAFE> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue.
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0);
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
float2 rate = fract(p0 * source_size);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_LINEAR, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue.
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0);
p0 = AdjustTexelByAddress<address>(p0, source_region);
p1 = AdjustTexelByAddress<address>(p1, source_region);
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
if (p0.x < source_region[0]) {
c0 = 0;
c2 = 0;
}
if (p0.y < source_region[1]) {
c0 = 0;
c1 = 0;
}
if (source_region[2] <= p1.x) {
c1 = 0;
c3 = 0;
}
if (source_region[3] <= p1.y) {
c2 = 0;
c3 = 0;
}
float2 rate = fract(p0 * source_size);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_SCREEN, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
float2 p0 = v.tex - texel_size / 2.0 / scale + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 / scale + (texel_size / 512.0);
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
float2 rate_center = float2(1.0, 1.0) - texel_size / 2.0 / scale;
float2 rate = clamp(((fract(p0 * source_size) - rate_center) * scale) + rate_center, 0.0, 1.0);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
}
};
template<bool useColorM, uint8_t filter, uint8_t address>
struct FragmentShaderImpl {
inline float4 Do(
VertexOut v,
texture2d<float> texture,
constant float2& source_size,
constant float4x4& color_matrix_body,
constant float4& color_matrix_translation,
constant float& scale,
constant float4& source_region) {
float4 c = ColorFromTexel<filter, address>().Do(v, texture, source_size, scale, source_region);
if (useColorM) {
c.rgb /= c.a + (1.0 - sign(c.a));
c = (color_matrix_body * c) + color_matrix_translation;
c *= v.color;
c.rgb *= c.a;
} else {
float4 s = v.color;
c *= float4(s.r, s.g, s.b, 1.0) * s.a;
}
c = min(c, c.a);
return c;
}
};
template<bool useColorM, uint8_t address>
struct FragmentShaderImpl<useColorM, FILTER_SCREEN, address> {
inline float4 Do(
VertexOut v,
texture2d<float> texture,
constant float2& source_size,
constant float4x4& color_matrix_body,
constant float4& color_matrix_translation,
constant float& scale,
constant float4& source_region) {
return ColorFromTexel<FILTER_SCREEN, address>().Do(v, texture, source_size, scale, source_region);
}
};
// Define Foo and FooCp macros to force macro replacement.
// See "6.10.3.1 Argument substitution" in ISO/IEC 9899.
#define FragmentShaderFunc(useColorM, filter, address) \
FragmentShaderFuncCp(useColorM, filter, address)
#define FragmentShaderFuncCp(useColorM, filter, address) \
fragment float4 FragmentShader_##useColorM##_##filter##_##address( \
VertexOut v [[stage_in]], \
texture2d<float> texture [[texture(0)]], \
constant float2& source_size [[buffer(2)]], \
constant float4x4& color_matrix_body [[buffer(3)]], \
constant float4& color_matrix_translation [[buffer(4)]], \
constant float& scale [[buffer(5)]], \
constant float4& source_region [[buffer(6)]]) { \
return FragmentShaderImpl<useColorM, filter, address>().Do( \
v, texture, source_size, color_matrix_body, color_matrix_translation, scale, source_region); \
}
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_REPEAT)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_REPEAT)
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_UNSAFE)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_UNSAFE)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_REPEAT)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_REPEAT)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_UNSAFE)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_UNSAFE)
FragmentShaderFunc(0, FILTER_SCREEN, ADDRESS_UNSAFE)
#undef FragmentShaderFuncName
`
type rpsKey struct {
useColorM bool
filter graphicsdriver.Filter
address graphicsdriver.Address
compositeMode graphicsdriver.CompositeMode
stencilMode stencilMode
screen bool
}
type Graphics struct {
view view
screenRPS mtl.RenderPipelineState
rpss map[rpsKey]mtl.RenderPipelineState
cq mtl.CommandQueue
cb mtl.CommandBuffer
rce mtl.RenderCommandEncoder
dsss map[stencilMode]mtl.DepthStencilState
screenDrawable ca.MetalDrawable
buffers map[mtl.CommandBuffer][]mtl.Buffer
unusedBuffers map[mtl.Buffer]struct{}
lastDst *Image
lastStencilMode stencilMode
vb mtl.Buffer
ib mtl.Buffer
images map[graphicsdriver.ImageID]*Image
nextImageID graphicsdriver.ImageID
shaders map[graphicsdriver.ShaderID]*Shader
nextShaderID graphicsdriver.ShaderID
src *Image
dst *Image
transparent bool
maxImageSize int
tmpTextures []mtl.Texture
pool unsafe.Pointer
}
type stencilMode int
const (
prepareStencil stencilMode = iota
drawWithStencil
noStencil
)
// isMetalAvailable reports whether Metal is available or not.
//
// On old mac devices like iMac 2011, Metal is not supported (#779).
var isMetalAvailable bool
func init() {
// Initialize isMetalAvailable on the main thread.
// TODO: Is there a better way to check whether Metal is available or not?
// It seems OK to call MTLCreateSystemDefaultDevice multiple times, so this should be fine.
_, isMetalAvailable = mtl.CreateSystemDefaultDevice()
}
var theGraphics Graphics
func Get() *Graphics {
if !isMetalAvailable {
return nil
}
return &theGraphics
}
func (g *Graphics) Begin() {
// NSAutoreleasePool is required to release drawable correctly (#847).
// https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/MTLBestPracticesGuide/Drawables.html
g.pool = C.allocAutoreleasePool()
}
func (g *Graphics) End() {
g.flushIfNeeded(true)
g.screenDrawable = ca.MetalDrawable{}
C.releaseAutoreleasePool(g.pool)
g.pool = nil
}
func (g *Graphics) SetWindow(window uintptr) {
// Note that [NSApp mainWindow] returns nil when the window is borderless.
// Then the window is needed to be given explicitly.
g.view.setWindow(window)
}
func (g *Graphics) SetUIView(uiview uintptr) {
// TODO: Should this be called on the main thread?
g.view.setUIView(uiview)
}
func pow2(x uintptr) uintptr {
var p2 uintptr = 1
for p2 < x {
p2 *= 2
}
return p2
}
func (g *Graphics) gcBuffers() {
for cb, bs := range g.buffers {
// If the command buffer still lives, the buffer must not be updated.
// TODO: Handle an error?
if cb.Status() != mtl.CommandBufferStatusCompleted {
continue
}
for _, b := range bs {
if g.unusedBuffers == nil {
g.unusedBuffers = map[mtl.Buffer]struct{}{}
}
g.unusedBuffers[b] = struct{}{}
}
delete(g.buffers, cb)
cb.Release()
}
const maxUnusedBuffers = 10
if len(g.unusedBuffers) > maxUnusedBuffers {
bufs := make([]mtl.Buffer, 0, len(g.unusedBuffers))
for b := range g.unusedBuffers {
bufs = append(bufs, b)
}
sort.Slice(bufs, func(a, b int) bool {
return bufs[a].Length() > bufs[b].Length()
})
for _, b := range bufs[maxUnusedBuffers:] {
delete(g.unusedBuffers, b)
b.Release()
}
}
}
func (g *Graphics) availableBuffer(length uintptr) mtl.Buffer {
if g.cb == (mtl.CommandBuffer{}) {
g.cb = g.cq.MakeCommandBuffer()
}
var newBuf mtl.Buffer
for b := range g.unusedBuffers {
if b.Length() >= length {
newBuf = b
delete(g.unusedBuffers, b)
break
}
}
if newBuf == (mtl.Buffer{}) {
newBuf = g.view.getMTLDevice().MakeBufferWithLength(pow2(length), resourceStorageMode)
}
if g.buffers == nil {
g.buffers = map[mtl.CommandBuffer][]mtl.Buffer{}
}
if _, ok := g.buffers[g.cb]; !ok {
g.cb.Retain()
}
g.buffers[g.cb] = append(g.buffers[g.cb], newBuf)
return newBuf
}
func (g *Graphics) SetVertices(vertices []float32, indices []uint16) {
vbSize := unsafe.Sizeof(vertices[0]) * uintptr(len(vertices))
ibSize := unsafe.Sizeof(indices[0]) * uintptr(len(indices))
g.vb = g.availableBuffer(vbSize)
g.vb.CopyToContents(unsafe.Pointer(&vertices[0]), vbSize)
g.ib = g.availableBuffer(ibSize)
g.ib.CopyToContents(unsafe.Pointer(&indices[0]), ibSize)
}
func (g *Graphics) flushIfNeeded(present bool) {
if g.cb == (mtl.CommandBuffer{}) {
return
}
g.flushRenderCommandEncoderIfNeeded()
if !g.view.presentsWithTransaction() && present && g.screenDrawable != (ca.MetalDrawable{}) {
g.cb.PresentDrawable(g.screenDrawable)
}
g.cb.Commit()
if g.view.presentsWithTransaction() && present && g.screenDrawable != (ca.MetalDrawable{}) {
g.cb.WaitUntilScheduled()
g.screenDrawable.Present()
}
for _, t := range g.tmpTextures {
t.Release()
}
g.tmpTextures = g.tmpTextures[:0]
g.cb = mtl.CommandBuffer{}
}
func (g *Graphics) checkSize(width, height int) {
if width < 1 {
panic(fmt.Sprintf("metal: width (%d) must be equal or more than %d", width, 1))
}
if height < 1 {
panic(fmt.Sprintf("metal: height (%d) must be equal or more than %d", height, 1))
}
m := g.MaxImageSize()
if width > m {
panic(fmt.Sprintf("metal: width (%d) must be less than or equal to %d", width, m))
}
if height > m {
panic(fmt.Sprintf("metal: height (%d) must be less than or equal to %d", height, m))
}
}
func (g *Graphics) genNextImageID() graphicsdriver.ImageID {
g.nextImageID++
return g.nextImageID
}
func (g *Graphics) genNextShaderID() graphicsdriver.ShaderID {
g.nextShaderID++
return g.nextShaderID
}
func (g *Graphics) NewImage(width, height int) (graphicsdriver.Image, error) {
g.checkSize(width, height)
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
PixelFormat: mtl.PixelFormatRGBA8UNorm,
Width: graphics.InternalImageSize(width),
Height: graphics.InternalImageSize(height),
StorageMode: storageMode,
Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget,
}
t := g.view.getMTLDevice().MakeTexture(td)
i := &Image{
id: g.genNextImageID(),
graphics: g,
width: width,
height: height,
texture: t,
}
g.addImage(i)
return i, nil
}
func (g *Graphics) NewScreenFramebufferImage(width, height int) (graphicsdriver.Image, error) {
g.view.setDrawableSize(width, height)
i := &Image{
id: g.genNextImageID(),
graphics: g,
width: width,
height: height,
screen: true,
}
g.addImage(i)
return i, nil
}
func (g *Graphics) addImage(img *Image) {
if g.images == nil {
g.images = map[graphicsdriver.ImageID]*Image{}
}
if _, ok := g.images[img.id]; ok {
panic(fmt.Sprintf("opengl: image ID %d was already registered", img.id))
}
g.images[img.id] = img
}
func (g *Graphics) removeImage(img *Image) {
delete(g.images, img.id)
}
func (g *Graphics) SetTransparent(transparent bool) {
g.transparent = transparent
}
func operationToBlendFactor(c graphicsdriver.Operation) mtl.BlendFactor {
switch c {
case graphicsdriver.Zero:
return mtl.BlendFactorZero
case graphicsdriver.One:
return mtl.BlendFactorOne
case graphicsdriver.SrcAlpha:
return mtl.BlendFactorSourceAlpha
case graphicsdriver.DstAlpha:
return mtl.BlendFactorDestinationAlpha
case graphicsdriver.OneMinusSrcAlpha:
return mtl.BlendFactorOneMinusSourceAlpha
case graphicsdriver.OneMinusDstAlpha:
return mtl.BlendFactorOneMinusDestinationAlpha
case graphicsdriver.DstColor:
return mtl.BlendFactorDestinationColor
default:
panic(fmt.Sprintf("metal: invalid operation: %d", c))
}
}
func (g *Graphics) Initialize() error {
// Creating *State objects are expensive and reuse them whenever possible.
// See https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Cmd-Submiss/Cmd-Submiss.html
// TODO: Release existing rpss
if g.rpss == nil {
g.rpss = map[rpsKey]mtl.RenderPipelineState{}
}
for _, dss := range g.dsss {
dss.Release()
}
if g.dsss == nil {
g.dsss = map[stencilMode]mtl.DepthStencilState{}
}
if err := g.view.initialize(); err != nil {
return err
}
if g.transparent {
g.view.ml.SetOpaque(false)
}
replaces := map[string]string{
"{{.FilterNearest}}": fmt.Sprintf("%d", graphicsdriver.FilterNearest),
"{{.FilterLinear}}": fmt.Sprintf("%d", graphicsdriver.FilterLinear),
"{{.FilterScreen}}": fmt.Sprintf("%d", graphicsdriver.FilterScreen),
"{{.AddressClampToZero}}": fmt.Sprintf("%d", graphicsdriver.AddressClampToZero),
"{{.AddressRepeat}}": fmt.Sprintf("%d", graphicsdriver.AddressRepeat),
"{{.AddressUnsafe}}": fmt.Sprintf("%d", graphicsdriver.AddressUnsafe),
}
src := source
for k, v := range replaces {
src = strings.Replace(src, k, v, -1)
}
lib, err := g.view.getMTLDevice().MakeLibrary(src, mtl.CompileOptions{})
if err != nil {
return err
}
vs, err := lib.MakeFunction("VertexShader")
if err != nil {
return err
}
fs, err := lib.MakeFunction(
fmt.Sprintf("FragmentShader_%d_%d_%d", 0, graphicsdriver.FilterScreen, graphicsdriver.AddressUnsafe))
if err != nil {
return err
}
rpld := mtl.RenderPipelineDescriptor{
VertexFunction: vs,
FragmentFunction: fs,
}
rpld.ColorAttachments[0].PixelFormat = g.view.colorPixelFormat()
rpld.ColorAttachments[0].BlendingEnabled = true
rpld.ColorAttachments[0].DestinationAlphaBlendFactor = mtl.BlendFactorZero
rpld.ColorAttachments[0].DestinationRGBBlendFactor = mtl.BlendFactorZero
rpld.ColorAttachments[0].SourceAlphaBlendFactor = mtl.BlendFactorOne
rpld.ColorAttachments[0].SourceRGBBlendFactor = mtl.BlendFactorOne
rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskAll
rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld)
if err != nil {
return err
}
g.screenRPS = rps
for _, screen := range []bool{false, true} {
for _, cm := range []bool{false, true} {
for _, a := range []graphicsdriver.Address{
graphicsdriver.AddressClampToZero,
graphicsdriver.AddressRepeat,
graphicsdriver.AddressUnsafe,
} {
for _, f := range []graphicsdriver.Filter{
graphicsdriver.FilterNearest,
graphicsdriver.FilterLinear,
} {
for c := graphicsdriver.CompositeModeSourceOver; c <= graphicsdriver.CompositeModeMax; c++ {
for _, stencil := range []stencilMode{
prepareStencil,
drawWithStencil,
noStencil,
} {
cmi := 0
if cm {
cmi = 1
}
fs, err := lib.MakeFunction(fmt.Sprintf("FragmentShader_%d_%d_%d", cmi, f, a))
if err != nil {
return err
}
rpld := mtl.RenderPipelineDescriptor{
VertexFunction: vs,
FragmentFunction: fs,
}
if stencil != noStencil {
rpld.StencilAttachmentPixelFormat = mtl.PixelFormatStencil8
}
pix := mtl.PixelFormatRGBA8UNorm
if screen {
pix = g.view.colorPixelFormat()
}
rpld.ColorAttachments[0].PixelFormat = pix
rpld.ColorAttachments[0].BlendingEnabled = true
src, dst := c.Operations()
rpld.ColorAttachments[0].DestinationAlphaBlendFactor = operationToBlendFactor(dst)
rpld.ColorAttachments[0].DestinationRGBBlendFactor = operationToBlendFactor(dst)
rpld.ColorAttachments[0].SourceAlphaBlendFactor = operationToBlendFactor(src)
rpld.ColorAttachments[0].SourceRGBBlendFactor = operationToBlendFactor(src)
if stencil == prepareStencil {
rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskNone
} else {
rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskAll
}
rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld)
if err != nil {
return err
}
g.rpss[rpsKey{
screen: screen,
useColorM: cm,
filter: f,
address: a,
compositeMode: c,
stencilMode: stencil,
}] = rps
}
}
}
}
}
}
// The stencil reference value is always 0 (default).
g.dsss[prepareStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{
BackFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationInvert,
StencilCompareFunction: mtl.CompareFunctionAlways,
},
FrontFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationInvert,
StencilCompareFunction: mtl.CompareFunctionAlways,
},
})
g.dsss[drawWithStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{
BackFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationKeep,
StencilCompareFunction: mtl.CompareFunctionNotEqual,
},
FrontFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationKeep,
StencilCompareFunction: mtl.CompareFunctionNotEqual,
},
})
g.dsss[noStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{
BackFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationKeep,
StencilCompareFunction: mtl.CompareFunctionAlways,
},
FrontFaceStencil: mtl.StencilDescriptor{
StencilFailureOperation: mtl.StencilOperationKeep,
DepthFailureOperation: mtl.StencilOperationKeep,
DepthStencilPassOperation: mtl.StencilOperationKeep,
StencilCompareFunction: mtl.CompareFunctionAlways,
},
})
g.cq = g.view.getMTLDevice().MakeCommandQueue()
return nil
}
func (g *Graphics) flushRenderCommandEncoderIfNeeded() {
if g.rce == (mtl.RenderCommandEncoder{}) {
return
}
g.rce.EndEncoding()
g.rce = mtl.RenderCommandEncoder{}
g.lastDst = nil
}
func (g *Graphics) draw(rps mtl.RenderPipelineState, dst *Image, dstRegion graphicsdriver.Region, srcs [graphics.ShaderImageNum]*Image, indexLen int, indexOffset int, uniforms []graphicsdriver.Uniform, stencilMode stencilMode) error {
// When prepareing a stencil buffer, flush the current render command encoder
// to make sure the stencil buffer is cleared when loading.
// TODO: What about clearing the stencil buffer by vertices?
if g.lastDst != dst || (g.lastStencilMode == noStencil) != (stencilMode == noStencil) || stencilMode == prepareStencil {
g.flushRenderCommandEncoderIfNeeded()
}
g.lastDst = dst
g.lastStencilMode = stencilMode
if g.rce == (mtl.RenderCommandEncoder{}) {
rpd := mtl.RenderPassDescriptor{}
// Even though the destination pixels are not used, mtl.LoadActionDontCare might cause glitches
// (#1019). Always using mtl.LoadActionLoad is safe.
if dst.screen {
rpd.ColorAttachments[0].LoadAction = mtl.LoadActionClear
} else {
rpd.ColorAttachments[0].LoadAction = mtl.LoadActionLoad
}
// The store action should always be 'store' even for the screen (#1700).
rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore
t := dst.mtlTexture()
if t == (mtl.Texture{}) {
return nil
}
rpd.ColorAttachments[0].Texture = t
rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{}
if stencilMode == prepareStencil {
dst.ensureStencil()
rpd.StencilAttachment.LoadAction = mtl.LoadActionClear
rpd.StencilAttachment.StoreAction = mtl.StoreActionDontCare
rpd.StencilAttachment.Texture = dst.stencil
}
if g.cb == (mtl.CommandBuffer{}) {
g.cb = g.cq.MakeCommandBuffer()
}
g.rce = g.cb.MakeRenderCommandEncoder(rpd)
}
g.rce.SetRenderPipelineState(rps)
// In Metal, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't
// match. Then, the Y direction must be inverted.
w, h := dst.internalSize()
g.rce.SetViewport(mtl.Viewport{
OriginX: 0,
OriginY: float64(h),
Width: float64(w),
Height: -float64(h),
ZNear: -1,
ZFar: 1,
})
g.rce.SetScissorRect(mtl.ScissorRect{
X: int(dstRegion.X),
Y: int(dstRegion.Y),
Width: int(dstRegion.Width),
Height: int(dstRegion.Height),
})
g.rce.SetVertexBuffer(g.vb, 0, 0)
for i, u := range uniforms {
if len(u.Float32s) == 0 {
v := u.Float32
g.rce.SetVertexBytes(unsafe.Pointer(&v), unsafe.Sizeof(v), i+1)
g.rce.SetFragmentBytes(unsafe.Pointer(&v), unsafe.Sizeof(v), i+1)
} else {
v := u.Float32s
g.rce.SetVertexBytes(unsafe.Pointer(&v[0]), unsafe.Sizeof(v[0])*uintptr(len(v)), i+1)
g.rce.SetFragmentBytes(unsafe.Pointer(&v[0]), unsafe.Sizeof(v[0])*uintptr(len(v)), i+1)
}
}
for i, src := range srcs {
if src != nil {
g.rce.SetFragmentTexture(src.texture, i)
} else {
g.rce.SetFragmentTexture(mtl.Texture{}, i)
}
}
g.rce.SetDepthStencilState(g.dsss[stencilMode])
g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, indexLen, mtl.IndexTypeUInt16, g.ib, indexOffset*2)
return nil
}
func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.ShaderImageNum]graphicsdriver.ImageID, offsets [graphics.ShaderImageNum - 1][2]float32, shaderID graphicsdriver.ShaderID, indexLen int, indexOffset int, mode graphicsdriver.CompositeMode, colorM graphicsdriver.ColorM, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, uniforms []graphicsdriver.Uniform, evenOdd bool) error {
dst := g.images[dstID]
if dst.screen {
g.view.update()
}
var srcs [graphics.ShaderImageNum]*Image
for i, srcID := range srcIDs {
srcs[i] = g.images[srcID]
}
rpss := map[stencilMode]mtl.RenderPipelineState{}
var uniformVars []graphicsdriver.Uniform
if shaderID == graphicsdriver.InvalidShaderID {
if dst.screen && filter == graphicsdriver.FilterScreen {
rpss[noStencil] = g.screenRPS
} else {
for _, stencil := range []stencilMode{
prepareStencil,
drawWithStencil,
noStencil,
} {
rpss[stencil] = g.rpss[rpsKey{
screen: dst.screen,
useColorM: !colorM.IsIdentity(),
filter: filter,
address: address,
compositeMode: mode,
stencilMode: stencil,
}]
}
}
w, h := dst.internalSize()
sourceSize := []float32{0, 0}
if filter != graphicsdriver.FilterNearest {
w, h := srcs[0].internalSize()
sourceSize[0] = float32(w)
sourceSize[1] = float32(h)
}
var esBody [16]float32
var esTranslate [4]float32
colorM.Elements(&esBody, &esTranslate)
scale := float32(0)
if filter == graphicsdriver.FilterScreen {
scale = float32(dst.width) / float32(srcs[0].width)
}
uniformVars = []graphicsdriver.Uniform{
{
Float32s: []float32{float32(w), float32(h)},
},
{
Float32s: sourceSize,
},
{
Float32s: esBody[:],
},
{
Float32s: esTranslate[:],
},
{
Float32: scale,
},
{
Float32s: []float32{
srcRegion.X,
srcRegion.Y,
srcRegion.X + srcRegion.Width,
srcRegion.Y + srcRegion.Height,
},
},
}
} else {
for _, stencil := range []stencilMode{
prepareStencil,
drawWithStencil,
noStencil,
} {
var err error
rpss[stencil], err = g.shaders[shaderID].RenderPipelineState(g.view.getMTLDevice(), mode, stencil)
if err != nil {
return err
}
}
uniformVars = make([]graphicsdriver.Uniform, graphics.PreservedUniformVariablesNum+len(uniforms))
// Set the destination texture size.
dw, dh := dst.internalSize()
uniformVars[graphics.DestinationTextureSizeUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: []float32{float32(dw), float32(dh)},
}
// Set the source texture sizes.
usizes := make([]float32, 2*len(srcs))
for i, src := range srcs {
if src != nil {
w, h := src.internalSize()
usizes[2*i] = float32(w)
usizes[2*i+1] = float32(h)
}
}
uniformVars[graphics.TextureSizesUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: usizes,
}
// Set the destination region's origin.
udorigin := []float32{float32(dstRegion.X) / float32(dw), float32(dstRegion.Y) / float32(dh)}
uniformVars[graphics.TextureDestinationRegionOriginUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: udorigin,
}
// Set the destination region's size.
udsize := []float32{float32(dstRegion.Width) / float32(dw), float32(dstRegion.Height) / float32(dh)}
uniformVars[graphics.TextureDestinationRegionSizeUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: udsize,
}
// Set the source offsets.
uoffsets := make([]float32, 2*len(offsets))
for i, offset := range offsets {
uoffsets[2*i] = offset[0]
uoffsets[2*i+1] = offset[1]
}
uniformVars[graphics.TextureSourceOffsetsUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: uoffsets,
}
// Set the source region's origin of texture0.
usorigin := []float32{float32(srcRegion.X), float32(srcRegion.Y)}
uniformVars[graphics.TextureSourceRegionOriginUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: usorigin,
}
// Set the source region's size of texture0.
ussize := []float32{float32(srcRegion.Width), float32(srcRegion.Height)}
uniformVars[graphics.TextureSourceRegionSizeUniformVariableIndex] = graphicsdriver.Uniform{
Float32s: ussize,
}
// Set the additional uniform variables.
for i, v := range uniforms {
const offset = graphics.PreservedUniformVariablesNum
uniformVars[offset+i] = v
}
}
if evenOdd {
if err := g.draw(rpss[prepareStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, prepareStencil); err != nil {
return err
}
if err := g.draw(rpss[drawWithStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, drawWithStencil); err != nil {
return err
}
} else {
if err := g.draw(rpss[noStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, noStencil); err != nil {
return err
}
}
return nil
}
func (g *Graphics) SetVsyncEnabled(enabled bool) {
g.view.setDisplaySyncEnabled(enabled)
}
func (g *Graphics) SetFullscreen(fullscreen bool) {
g.view.setFullscreen(fullscreen)
}
func (g *Graphics) FramebufferYDirection() graphicsdriver.YDirection {
return graphicsdriver.Downward
}
func (g *Graphics) NeedsRestoring() bool {
return false
}
func (g *Graphics) NeedsClearingScreen() bool {
return false
}
func (g *Graphics) IsGL() bool {
return false
}
func (g *Graphics) HasHighPrecisionFloat() bool {
return true
}
func (g *Graphics) MaxImageSize() int {
if g.maxImageSize != 0 {
return g.maxImageSize
}
g.maxImageSize = 4096
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
switch {
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily5_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily4_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily3_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v2):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v1):
g.maxImageSize = 4096
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v2):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v1):
g.maxImageSize = 4096
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily2_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily1_v1):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_macOS_GPUFamily1_v1):
g.maxImageSize = 16384
default:
panic("metal: there is no supported feature set")
}
return g.maxImageSize
}
func (g *Graphics) NewShader(program *shaderir.Program) (graphicsdriver.Shader, error) {
s, err := newShader(g.view.getMTLDevice(), g.genNextShaderID(), program)
if err != nil {
return nil, err
}
g.addShader(s)
return s, nil
}
func (g *Graphics) addShader(shader *Shader) {
if g.shaders == nil {
g.shaders = map[graphicsdriver.ShaderID]*Shader{}
}
if _, ok := g.shaders[shader.id]; ok {
panic(fmt.Sprintf("metal: shader ID %d was already registered", shader.id))
}
g.shaders[shader.id] = shader
}
func (g *Graphics) removeShader(shader *Shader) {
delete(g.shaders, shader.id)
}
type Image struct {
id graphicsdriver.ImageID
graphics *Graphics
width int
height int
screen bool
texture mtl.Texture
stencil mtl.Texture
}
func (i *Image) ID() graphicsdriver.ImageID {
return i.id
}
func (i *Image) internalSize() (int, int) {
if i.screen {
return i.width, i.height
}
return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height)
}
func (i *Image) Dispose() {
if i.stencil != (mtl.Texture{}) {
i.stencil.Release()
i.stencil = mtl.Texture{}
}
if i.texture != (mtl.Texture{}) {
i.texture.Release()
i.texture = mtl.Texture{}
}
i.graphics.removeImage(i)
}
func (i *Image) IsInvalidated() bool {
// TODO: Does Metal cause context lost?
// https://developer.apple.com/documentation/metal/mtlresource/1515898-setpurgeablestate
// https://developer.apple.com/documentation/metal/mtldevicenotificationhandler
return false
}
func (i *Image) syncTexture() {
i.graphics.flushRenderCommandEncoderIfNeeded()
// Calling SynchronizeTexture is ignored on iOS (see mtl.m), but it looks like committing BlitCommandEncoder
// is necessary (#1337).
if i.graphics.cb != (mtl.CommandBuffer{}) {
panic("metal: command buffer must be empty at syncTexture: flushIfNeeded is not called yet?")
}
cb := i.graphics.cq.MakeCommandBuffer()
bce := cb.MakeBlitCommandEncoder()
bce.SynchronizeTexture(i.texture, 0, 0)
bce.EndEncoding()
cb.Commit()
cb.WaitUntilCompleted()
}
func (i *Image) Pixels() ([]byte, error) {
i.graphics.flushIfNeeded(false)
i.syncTexture()
b := make([]byte, 4*i.width*i.height)
i.texture.GetBytes(&b[0], uintptr(4*i.width), mtl.Region{
Size: mtl.Size{Width: i.width, Height: i.height, Depth: 1},
}, 0)
return b, nil
}
func (i *Image) ReplacePixels(args []*graphicsdriver.ReplacePixelsArgs) {
g := i.graphics
g.flushRenderCommandEncoderIfNeeded()
// Calculate the smallest texture size to include all the values in args.
minX := math.MaxInt32
minY := math.MaxInt32
maxX := 0
maxY := 0
for _, a := range args {
if minX > a.X {
minX = a.X
}
if maxX < a.X+a.Width {
maxX = a.X + a.Width
}
if minY > a.Y {
minY = a.Y
}
if maxY < a.Y+a.Height {
maxY = a.Y + a.Height
}
}
w := maxX - minX
h := maxY - minY
// Use a temporary texture to send pixels asynchrounsly, whichever the memory is shared (e.g., iOS) or
// managed (e.g., macOS). A temporary texture is needed since ReplaceRegion tries to sync the pixel
// data between CPU and GPU, and doing it on the existing texture is inefficient (#1418).
// The texture cannot be reused until sending the pixels finishes, then create new ones for each call.
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
PixelFormat: mtl.PixelFormatRGBA8UNorm,
Width: w,
Height: h,
StorageMode: storageMode,
Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget,
}
t := g.view.getMTLDevice().MakeTexture(td)
g.tmpTextures = append(g.tmpTextures, t)
for _, a := range args {
t.ReplaceRegion(mtl.Region{
Origin: mtl.Origin{X: a.X - minX, Y: a.Y - minY, Z: 0},
Size: mtl.Size{Width: a.Width, Height: a.Height, Depth: 1},
}, 0, unsafe.Pointer(&a.Pixels[0]), 4*a.Width)
}
if g.cb == (mtl.CommandBuffer{}) {
g.cb = i.graphics.cq.MakeCommandBuffer()
}
bce := g.cb.MakeBlitCommandEncoder()
for _, a := range args {
so := mtl.Origin{X: a.X - minX, Y: a.Y - minY, Z: 0}
ss := mtl.Size{Width: a.Width, Height: a.Height, Depth: 1}
do := mtl.Origin{X: a.X, Y: a.Y, Z: 0}
bce.CopyFromTexture(t, 0, 0, so, ss, i.texture, 0, 0, do)
}
bce.EndEncoding()
}
func (i *Image) mtlTexture() mtl.Texture {
if i.screen {
g := i.graphics
if g.screenDrawable == (ca.MetalDrawable{}) {
drawable := g.view.nextDrawable()
if drawable == (ca.MetalDrawable{}) {
return mtl.Texture{}
}
g.screenDrawable = drawable
// After nextDrawable, it is expected some command buffers are completed.
g.gcBuffers()
}
return g.screenDrawable.Texture()
}
return i.texture
}
func (i *Image) ensureStencil() {
if i.stencil != (mtl.Texture{}) {
return
}
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
PixelFormat: mtl.PixelFormatStencil8,
Width: graphics.InternalImageSize(i.width),
Height: graphics.InternalImageSize(i.height),
StorageMode: mtl.StorageModePrivate,
Usage: mtl.TextureUsageRenderTarget,
}
i.stencil = i.graphics.view.getMTLDevice().MakeTexture(td)
}