mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2024-12-27 20:28:54 +01:00
311 lines
8.1 KiB
Go
311 lines
8.1 KiB
Go
// Copyright 2018 The Ebiten Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package mipmap
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"math"
|
|
|
|
"github.com/hajimehoshi/ebiten/v2/internal/atlas"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/buffered"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/restorable"
|
|
)
|
|
|
|
func canUseMipmap(imageType atlas.ImageType) bool {
|
|
switch imageType {
|
|
case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Mipmap is a set of buffered.Image sorted by the order of mipmap level.
|
|
// The level 0 image is a regular image and higher-level images are used for mipmap.
|
|
type Mipmap struct {
|
|
width int
|
|
height int
|
|
imageType atlas.ImageType
|
|
orig *buffered.Image
|
|
imgs map[int]imageWithDirtyFlag
|
|
}
|
|
|
|
type imageWithDirtyFlag struct {
|
|
img *buffered.Image
|
|
dirty bool
|
|
}
|
|
|
|
func New(width, height int, imageType atlas.ImageType) *Mipmap {
|
|
return &Mipmap{
|
|
width: width,
|
|
height: height,
|
|
orig: buffered.NewImage(width, height, imageType),
|
|
imageType: imageType,
|
|
}
|
|
}
|
|
|
|
func (m *Mipmap) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, name string, blackbg bool) (string, error) {
|
|
return m.orig.DumpScreenshot(graphicsDriver, name, blackbg)
|
|
}
|
|
|
|
func (m *Mipmap) WritePixels(pix []byte, region image.Rectangle) {
|
|
m.orig.WritePixels(pix, region)
|
|
m.markDirty()
|
|
}
|
|
|
|
func (m *Mipmap) markDirty() {
|
|
for i, img := range m.imgs {
|
|
img.dirty = true
|
|
m.imgs[i] = img
|
|
}
|
|
}
|
|
|
|
func (m *Mipmap) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte, region image.Rectangle) (ok bool, err error) {
|
|
return m.orig.ReadPixels(graphicsDriver, pixels, region)
|
|
}
|
|
|
|
func (m *Mipmap) DrawTriangles(srcs [graphics.ShaderSrcImageCount]*Mipmap, vertices []float32, indices []uint32, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderSrcImageCount]image.Rectangle, shader *atlas.Shader, uniforms []uint32, fillRule graphicsdriver.FillRule, canSkipMipmap bool, hint restorable.Hint) {
|
|
if len(indices) == 0 {
|
|
return
|
|
}
|
|
|
|
// Use the fast path if mipmap is not used.
|
|
if canSkipMipmap || srcs[0] == nil || !canUseMipmap(srcs[0].imageType) {
|
|
var imgs [graphics.ShaderSrcImageCount]*buffered.Image
|
|
for i, src := range srcs {
|
|
if src == nil {
|
|
continue
|
|
}
|
|
imgs[i] = src.orig
|
|
}
|
|
m.orig.DrawTriangles(imgs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, hint)
|
|
m.markDirty()
|
|
return
|
|
}
|
|
|
|
level := math.MaxInt32
|
|
for i := 0; i < len(indices); i += 3 {
|
|
idx0 := indices[i]
|
|
idx1 := indices[i+1]
|
|
idx2 := indices[i+2]
|
|
dx0 := vertices[graphics.VertexFloatCount*idx0]
|
|
dy0 := vertices[graphics.VertexFloatCount*idx0+1]
|
|
sx0 := vertices[graphics.VertexFloatCount*idx0+2]
|
|
sy0 := vertices[graphics.VertexFloatCount*idx0+3]
|
|
dx1 := vertices[graphics.VertexFloatCount*idx1]
|
|
dy1 := vertices[graphics.VertexFloatCount*idx1+1]
|
|
sx1 := vertices[graphics.VertexFloatCount*idx1+2]
|
|
sy1 := vertices[graphics.VertexFloatCount*idx1+3]
|
|
dx2 := vertices[graphics.VertexFloatCount*idx2]
|
|
dy2 := vertices[graphics.VertexFloatCount*idx2+1]
|
|
sx2 := vertices[graphics.VertexFloatCount*idx2+2]
|
|
sy2 := vertices[graphics.VertexFloatCount*idx2+3]
|
|
if l := mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1); level > l {
|
|
level = l
|
|
}
|
|
if l := mipmapLevelFromDistance(dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2); level > l {
|
|
level = l
|
|
}
|
|
if l := mipmapLevelFromDistance(dx2, dy2, dx0, dy0, sx2, sy2, sx0, sy0); level > l {
|
|
level = l
|
|
}
|
|
}
|
|
if level == math.MaxInt32 {
|
|
panic("mipmap: level must be calculated at least once but not")
|
|
}
|
|
|
|
var imgs [graphics.ShaderSrcImageCount]*buffered.Image
|
|
for i, src := range srcs {
|
|
if src == nil {
|
|
continue
|
|
}
|
|
if level != 0 {
|
|
if img := src.level(level); img != nil {
|
|
s := float32(pow2(level))
|
|
for i := 0; i < len(vertices); i += graphics.VertexFloatCount {
|
|
vertices[i+2] /= s
|
|
vertices[i+3] /= s
|
|
}
|
|
imgs[i] = img
|
|
continue
|
|
}
|
|
}
|
|
imgs[i] = src.orig
|
|
}
|
|
|
|
m.orig.DrawTriangles(imgs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, hint)
|
|
m.markDirty()
|
|
}
|
|
|
|
func (m *Mipmap) setImg(level int, img *buffered.Image) {
|
|
if m.imgs == nil {
|
|
m.imgs = map[int]imageWithDirtyFlag{}
|
|
}
|
|
m.imgs[level] = imageWithDirtyFlag{
|
|
img: img,
|
|
dirty: false,
|
|
}
|
|
}
|
|
|
|
func (m *Mipmap) level(level int) *buffered.Image {
|
|
if level == 0 {
|
|
panic("mipmap: level must be non-zero at level")
|
|
}
|
|
|
|
if !canUseMipmap(m.imageType) {
|
|
panic("mipmap: mipmap images for a screen image is not implemented yet")
|
|
}
|
|
|
|
img, ok := m.imgs[level]
|
|
if ok && !img.dirty {
|
|
return img.img
|
|
}
|
|
|
|
var srcW, srcH int
|
|
var src *buffered.Image
|
|
vs := make([]float32, 4*graphics.VertexFloatCount)
|
|
switch {
|
|
case level == 1:
|
|
src = m.orig
|
|
srcW = m.width
|
|
srcH = m.height
|
|
case level > 1:
|
|
src = m.level(level - 1)
|
|
if src == nil {
|
|
m.setImg(level, nil)
|
|
return nil
|
|
}
|
|
srcW = sizeForLevel(m.width, level-1)
|
|
srcH = sizeForLevel(m.height, level-1)
|
|
default:
|
|
panic(fmt.Sprintf("mipmap: invalid level: %d", level))
|
|
}
|
|
|
|
graphics.QuadVerticesFromSrcAndMatrix(vs, 0, 0, float32(srcW), float32(srcH), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1)
|
|
|
|
is := graphics.QuadIndices()
|
|
|
|
dstW := sizeForLevel(m.width, level)
|
|
dstH := sizeForLevel(m.height, level)
|
|
if dstW == 0 || dstH == 0 {
|
|
m.setImg(level, nil)
|
|
return nil
|
|
}
|
|
// buffered.NewImage panics with a too big size when actual allocation happens.
|
|
// 4096 should be a safe size in most environments (#1399).
|
|
// Unfortunately a precise max image size cannot be obtained here since this requires GPU access.
|
|
if dstW > 4096 || dstH > 4096 {
|
|
m.setImg(level, nil)
|
|
return nil
|
|
}
|
|
|
|
var s *buffered.Image
|
|
if img.img != nil {
|
|
// As s is overwritten, this doesn't have to be cleared.
|
|
s = img.img
|
|
} else {
|
|
s = buffered.NewImage(dstW, dstH, m.imageType)
|
|
}
|
|
|
|
dstRegion := image.Rect(0, 0, dstW, dstH)
|
|
srcRegion := image.Rect(0, 0, srcW, srcH)
|
|
s.DrawTriangles([graphics.ShaderSrcImageCount]*buffered.Image{src}, vs, is, graphicsdriver.BlendCopy, dstRegion, [graphics.ShaderSrcImageCount]image.Rectangle{srcRegion}, atlas.LinearFilterShader, nil, graphicsdriver.FillRuleFillAll, restorable.HintOverwriteDstRegion)
|
|
m.setImg(level, s)
|
|
|
|
return m.imgs[level].img
|
|
}
|
|
|
|
func sizeForLevel(x int, level int) int {
|
|
for i := 0; i < level; i++ {
|
|
x /= 2
|
|
if x == 0 {
|
|
return 0
|
|
}
|
|
}
|
|
return x
|
|
}
|
|
|
|
func (m *Mipmap) Deallocate() {
|
|
for _, img := range m.imgs {
|
|
if img.img == nil {
|
|
continue
|
|
}
|
|
img.img.Deallocate()
|
|
}
|
|
for k := range m.imgs {
|
|
delete(m.imgs, k)
|
|
}
|
|
m.orig.Deallocate()
|
|
}
|
|
|
|
// mipmapLevel returns an appropriate mipmap level for the given distance.
|
|
func mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1 float32) int {
|
|
const maxLevel = 6
|
|
|
|
d := (dx1-dx0)*(dx1-dx0) + (dy1-dy0)*(dy1-dy0)
|
|
s := (sx1-sx0)*(sx1-sx0) + (sy1-sy0)*(sy1-sy0)
|
|
if s == 0 {
|
|
return 0
|
|
}
|
|
scale := d / s
|
|
|
|
// Scale can be infinite when the specified scale is extremely big (#1398).
|
|
if math.IsInf(float64(scale), 0) {
|
|
return 0
|
|
}
|
|
|
|
// Scale can be zero when the specified scale is extremely small (#1398).
|
|
if scale == 0 {
|
|
return 0
|
|
}
|
|
|
|
level := 0
|
|
for scale < 0.25 {
|
|
level++
|
|
scale *= 4
|
|
}
|
|
|
|
if level > 0 {
|
|
// If the image can be scaled into 0 size, adjust the level. (#839)
|
|
w, h := int(sx1-sx0), int(sy1-sy0)
|
|
for level >= 0 {
|
|
s := 1 << uint(level)
|
|
if (w > 0 && w/s == 0) || (h > 0 && h/s == 0) {
|
|
level--
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
|
|
if level < 0 {
|
|
// As the render source is too small, nothing is rendered.
|
|
return 0
|
|
}
|
|
}
|
|
|
|
if level > maxLevel {
|
|
level = maxLevel
|
|
}
|
|
|
|
return level
|
|
}
|
|
|
|
func pow2(power int) float32 {
|
|
x := 1
|
|
return float32(x << uint(power))
|
|
}
|