ebiten/vertices.go
seebs 0b7ba8e573 Do GeoM projection on CPU (#477)
Handling GeoM projection on CPU may seem like a weird choice, given
how fast GPU is, but it pays off:

* You only have to do a very small subset of the actual matrix
  multiply.
* You don't have to construct a matrix in the vertex shader.
* Six fewer float32 values per vertex.
* You do still have to do the matrix computation for each vertex,
  though.

Signed-off-by: Seebs <seebs@seebs.net>
2018-01-14 16:01:55 +09:00

130 lines
2.7 KiB
Go

// Copyright 2017 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ebiten
import (
"github.com/hajimehoshi/ebiten/internal/affine"
"github.com/hajimehoshi/ebiten/internal/restorable"
)
var (
quadFloat32Num = restorable.QuadVertexSizeInBytes() / 4
theVerticesBackend = &verticesBackend{}
)
type verticesBackend struct {
backend []float32
head int
}
func (v *verticesBackend) get() []float32 {
const num = 256
if v.backend == nil {
v.backend = make([]float32, quadFloat32Num*num)
}
s := v.backend[v.head : v.head+quadFloat32Num]
v.head += quadFloat32Num
if v.head+quadFloat32Num > len(v.backend) {
v.backend = nil
v.head = 0
}
return s
}
func vertices(sx0, sy0, sx1, sy1 int, width, height int, geo *affine.GeoM) []float32 {
if sx0 >= sx1 || sy0 >= sy1 {
return nil
}
if sx1 <= 0 || sy1 <= 0 {
return nil
}
// TODO: This function should be in graphics package?
vs := theVerticesBackend.get()
if sx0 < 0 || sy0 < 0 {
dx := 0.0
dy := 0.0
if sx0 < 0 {
dx = -float64(sx0)
sx0 = 0
}
if sy0 < 0 {
dy = -float64(sy0)
sy0 = 0
}
g := affine.GeoM{}
g.Translate(dx, dy)
g.Concat(geo)
geo = &g
}
x0, y0 := float64(0), float64(0)
x1, y1 := float64(sx1 - sx0), float64(sy1 - sy0)
// it really feels like we should be able to cache this computation
// but it may not matter.
w := 1
h := 1
for w < width {
w *= 2
}
for h < height {
h *= 2
}
wf := float32(w)
hf := float32(h)
u0, v0, u1, v1 := float32(sx0)/wf, float32(sy0)/hf, float32(sx1)/wf, float32(sy1)/hf
x, y := geo.Apply32(x0, y0)
// Vertex coordinates
vs[0] = x
vs[1] = y
// Texture coordinates: first 2 values indicates the actual coodinate, and
// the second indicates diagonally opposite coodinates.
// The second is needed to calculate source rectangle size in shader programs.
vs[2] = u0
vs[3] = v0
vs[4] = u1
vs[5] = v1
// and the same for the other three coordinates
x, y = geo.Apply32(x1, y0)
vs[6] = x
vs[7] = y
vs[8] = u1
vs[9] = v0
vs[10] = u0
vs[11] = v1
x, y = geo.Apply32(x0, y1)
vs[12] = x
vs[13] = y
vs[14] = u0
vs[15] = v1
vs[16] = u1
vs[17] = v0
x, y = geo.Apply32(x1, y1)
vs[18] = x
vs[19] = y
vs[20] = u1
vs[21] = v1
vs[22] = u0
vs[23] = v0
return vs
}