ebiten/internal/ui/image.go
Hajime Hoshi 066029539e internal/ui: clean-up code
A callback is preferred to a dirty flag.

Updates #2341
2022-10-28 19:07:37 +09:00

359 lines
11 KiB
Go

// Copyright 2022 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ui
import (
"fmt"
"github.com/hajimehoshi/ebiten/v2/internal/atlas"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/mipmap"
)
// panicOnErrorOnReadingPixels indicates whether reading pixels panics on an error or not.
// This value is set only on testing.
var panicOnErrorOnReadingPixels bool
func SetPanicOnErrorOnReadingPixelsForTesting(value bool) {
panicOnErrorOnReadingPixels = value
}
const bigOffscreenScale = 2
type Image struct {
mipmap *mipmap.Mipmap
width int
height int
imageType atlas.ImageType
dotsBuffer map[[2]int][4]byte
// bigOffscreenBuffer is a double-sized offscreen for anti-alias rendering.
bigOffscreenBuffer *Image
bigOffscreenBufferBlend graphicsdriver.Blend
bigOffscreenBufferDirty bool
// drawCallback is a callback called when DrawTriangles or WritePixels is called.
// drawCallback is useful to detect whether the image is manipulated or not after a certain time.
drawCallback func()
}
func NewImage(width, height int, imageType atlas.ImageType) *Image {
return &Image{
mipmap: mipmap.New(width, height, imageType),
width: width,
height: height,
imageType: imageType,
}
}
func (i *Image) MarkDisposed() {
if i.mipmap == nil {
return
}
if i.bigOffscreenBuffer != nil {
i.bigOffscreenBuffer.MarkDisposed()
i.bigOffscreenBuffer = nil
i.bigOffscreenBufferDirty = false
}
i.mipmap.MarkDisposed()
i.mipmap = nil
i.dotsBuffer = nil
i.drawCallback = nil
}
func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, blend graphicsdriver.Blend, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, canSkipMipmap bool, antialias bool) {
if i.drawCallback != nil {
i.drawCallback()
}
if antialias {
// Flush the other buffer to make the buffers exclusive.
i.flushDotsBufferIfNeeded()
if i.bigOffscreenBufferBlend != blend {
i.flushBigOffscreenBufferIfNeeded()
}
if i.bigOffscreenBuffer == nil {
var imageType atlas.ImageType
switch i.imageType {
case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged:
imageType = atlas.ImageTypeUnmanaged
case atlas.ImageTypeScreen, atlas.ImageTypeVolatile:
imageType = atlas.ImageTypeVolatile
default:
panic(fmt.Sprintf("ui: unexpected image type: %d", imageType))
}
i.bigOffscreenBuffer = NewImage(i.width*bigOffscreenScale, i.height*bigOffscreenScale, imageType)
}
i.bigOffscreenBufferBlend = blend
// Copy the current rendering result to get the correct blending result.
if blend != graphicsdriver.BlendSourceOver && !i.bigOffscreenBufferDirty {
srcs := [graphics.ShaderImageCount]*Image{i}
vs := graphics.QuadVertices(
0, 0, float32(i.width), float32(i.height),
bigOffscreenScale, 0, 0, bigOffscreenScale, 0, 0,
1, 1, 1, 1)
is := graphics.QuadIndices()
dstRegion := graphicsdriver.Region{
X: 0,
Y: 0,
Width: float32(i.width * bigOffscreenScale),
Height: float32(i.height * bigOffscreenScale),
}
i.bigOffscreenBuffer.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader, nil, false, true, false)
}
for i := 0; i < len(vertices); i += graphics.VertexFloatCount {
vertices[i] *= bigOffscreenScale
vertices[i+1] *= bigOffscreenScale
}
dstRegion.X *= bigOffscreenScale
dstRegion.Y *= bigOffscreenScale
dstRegion.Width *= bigOffscreenScale
dstRegion.Height *= bigOffscreenScale
i.bigOffscreenBuffer.DrawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegion, subimageOffsets, shader, uniforms, evenOdd, canSkipMipmap, false)
i.bigOffscreenBufferDirty = true
return
}
i.flushBufferIfNeeded()
var srcMipmaps [graphics.ShaderImageCount]*mipmap.Mipmap
for i, src := range srcs {
if src == nil {
continue
}
src.flushBufferIfNeeded()
srcMipmaps[i] = src.mipmap
}
i.mipmap.DrawTriangles(srcMipmaps, vertices, indices, blend, dstRegion, srcRegion, subimageOffsets, shader.shader, uniforms, evenOdd, canSkipMipmap)
}
func (i *Image) WritePixels(pix []byte, x, y, width, height int) {
if i.drawCallback != nil {
i.drawCallback()
}
if width == 1 && height == 1 {
// Flush the other buffer to make the buffers exclusive.
i.flushBigOffscreenBufferIfNeeded()
if i.dotsBuffer == nil {
i.dotsBuffer = map[[2]int][4]byte{}
}
var clr [4]byte
copy(clr[:], pix)
i.dotsBuffer[[2]int{x, y}] = clr
// One square requires 6 indices (= 2 triangles).
if len(i.dotsBuffer) >= graphics.IndicesCount/6 {
i.flushDotsBufferIfNeeded()
}
return
}
i.flushBufferIfNeeded()
i.mipmap.WritePixels(pix, x, y, width, height)
}
func (i *Image) ReadPixels(pixels []byte, x, y, width, height int) {
// Check the error existence and avoid unnecessary calls.
if theGlobalState.error() != nil {
return
}
i.flushBigOffscreenBufferIfNeeded()
if width == 1 && height == 1 {
if c, ok := i.dotsBuffer[[2]int{x, y}]; ok {
copy(pixels, c[:])
return
}
// Do not call flushDotsBufferIfNeeded here. This would slow (image/draw).Draw.
// See ebiten.TestImageDrawOver.
} else {
i.flushDotsBufferIfNeeded()
}
if err := theUI.readPixels(i.mipmap, pixels, x, y, width, height); err != nil {
if panicOnErrorOnReadingPixels {
panic(err)
}
theGlobalState.setError(err)
}
}
func (i *Image) DumpScreenshot(name string, blackbg bool) (string, error) {
i.flushBufferIfNeeded()
return theUI.dumpScreenshot(i.mipmap, name, blackbg)
}
func (i *Image) flushBufferIfNeeded() {
// The buffers are exclusive and the order should not matter.
i.flushDotsBufferIfNeeded()
i.flushBigOffscreenBufferIfNeeded()
}
func (i *Image) flushDotsBufferIfNeeded() {
if len(i.dotsBuffer) == 0 {
return
}
l := len(i.dotsBuffer)
vs := graphics.Vertices(l * 4)
is := make([]uint16, l*6)
sx, sy := float32(1), float32(1)
var idx int
for p, c := range i.dotsBuffer {
dx := float32(p[0])
dy := float32(p[1])
crf := float32(c[0]) / 0xff
cgf := float32(c[1]) / 0xff
cbf := float32(c[2]) / 0xff
caf := float32(c[3]) / 0xff
vs[graphics.VertexFloatCount*4*idx] = dx
vs[graphics.VertexFloatCount*4*idx+1] = dy
vs[graphics.VertexFloatCount*4*idx+2] = sx
vs[graphics.VertexFloatCount*4*idx+3] = sy
vs[graphics.VertexFloatCount*4*idx+4] = crf
vs[graphics.VertexFloatCount*4*idx+5] = cgf
vs[graphics.VertexFloatCount*4*idx+6] = cbf
vs[graphics.VertexFloatCount*4*idx+7] = caf
vs[graphics.VertexFloatCount*4*idx+8] = dx + 1
vs[graphics.VertexFloatCount*4*idx+9] = dy
vs[graphics.VertexFloatCount*4*idx+10] = sx + 1
vs[graphics.VertexFloatCount*4*idx+11] = sy
vs[graphics.VertexFloatCount*4*idx+12] = crf
vs[graphics.VertexFloatCount*4*idx+13] = cgf
vs[graphics.VertexFloatCount*4*idx+14] = cbf
vs[graphics.VertexFloatCount*4*idx+15] = caf
vs[graphics.VertexFloatCount*4*idx+16] = dx
vs[graphics.VertexFloatCount*4*idx+17] = dy + 1
vs[graphics.VertexFloatCount*4*idx+18] = sx
vs[graphics.VertexFloatCount*4*idx+19] = sy + 1
vs[graphics.VertexFloatCount*4*idx+20] = crf
vs[graphics.VertexFloatCount*4*idx+21] = cgf
vs[graphics.VertexFloatCount*4*idx+22] = cbf
vs[graphics.VertexFloatCount*4*idx+23] = caf
vs[graphics.VertexFloatCount*4*idx+24] = dx + 1
vs[graphics.VertexFloatCount*4*idx+25] = dy + 1
vs[graphics.VertexFloatCount*4*idx+26] = sx + 1
vs[graphics.VertexFloatCount*4*idx+27] = sy + 1
vs[graphics.VertexFloatCount*4*idx+28] = crf
vs[graphics.VertexFloatCount*4*idx+29] = cgf
vs[graphics.VertexFloatCount*4*idx+30] = cbf
vs[graphics.VertexFloatCount*4*idx+31] = caf
is[6*idx] = uint16(4 * idx)
is[6*idx+1] = uint16(4*idx + 1)
is[6*idx+2] = uint16(4*idx + 2)
is[6*idx+3] = uint16(4*idx + 1)
is[6*idx+4] = uint16(4*idx + 2)
is[6*idx+5] = uint16(4*idx + 3)
idx++
}
i.dotsBuffer = nil
srcs := [graphics.ShaderImageCount]*mipmap.Mipmap{whiteImage.mipmap}
dr := graphicsdriver.Region{
X: 0,
Y: 0,
Width: float32(i.width),
Height: float32(i.height),
}
i.mipmap.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader.shader, nil, false, true)
}
func (i *Image) flushBigOffscreenBufferIfNeeded() {
if !i.bigOffscreenBufferDirty {
return
}
// Mark the offscreen clearn earlier to avoid recursive calls.
i.bigOffscreenBufferDirty = false
srcs := [graphics.ShaderImageCount]*Image{i.bigOffscreenBuffer}
vs := graphics.QuadVertices(
0, 0, float32(i.width*bigOffscreenScale), float32(i.height*bigOffscreenScale),
1.0/bigOffscreenScale, 0, 0, 1.0/bigOffscreenScale, 0, 0,
1, 1, 1, 1)
is := graphics.QuadIndices()
dstRegion := graphicsdriver.Region{
X: 0,
Y: 0,
Width: float32(i.width),
Height: float32(i.height),
}
blend := graphicsdriver.BlendSourceOver
if i.bigOffscreenBufferBlend != graphicsdriver.BlendSourceOver {
blend = graphicsdriver.BlendCopy
}
i.DrawTriangles(srcs, vs, is, blend, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, LinearFilterShader, nil, false, true, false)
i.bigOffscreenBuffer.clear()
i.bigOffscreenBufferDirty = false
}
func DumpImages(dir string) (string, error) {
return theUI.dumpImages(dir)
}
var (
whiteImage = NewImage(3, 3, atlas.ImageTypeRegular)
)
func init() {
pix := make([]byte, 4*whiteImage.width*whiteImage.height)
for i := range pix {
pix[i] = 0xff
}
// As whiteImage is used at Fill, use WritePixels instead.
whiteImage.WritePixels(pix, 0, 0, whiteImage.width, whiteImage.height)
}
func (i *Image) clear() {
i.Fill(0, 0, 0, 0, 0, 0, i.width, i.height)
}
func (i *Image) Fill(r, g, b, a float32, x, y, width, height int) {
dstRegion := graphicsdriver.Region{
X: float32(x),
Y: float32(y),
Width: float32(width),
Height: float32(height),
}
vs := graphics.QuadVertices(
1, 1, float32(whiteImage.width-1), float32(whiteImage.height-1),
float32(i.width), 0, 0, float32(i.height), 0, 0,
r, g, b, a)
is := graphics.QuadIndices()
srcs := [graphics.ShaderImageCount]*Image{whiteImage}
i.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader, nil, false, true, false)
}