ebiten/examples/2048/2048/tile.go
2020-10-04 04:30:40 +09:00

422 lines
9.4 KiB
Go

// Copyright 2016 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package twenty48
import (
"errors"
"image/color"
"log"
"math/rand"
"sort"
"strconv"
"golang.org/x/image/font"
"golang.org/x/image/font/opentype"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/examples/resources/fonts"
"github.com/hajimehoshi/ebiten/v2/text"
)
var (
mplusSmallFont font.Face
mplusNormalFont font.Face
mplusBigFont font.Face
)
func init() {
tt, err := opentype.Parse(fonts.MPlus1pRegular_ttf)
if err != nil {
log.Fatal(err)
}
const dpi = 72
mplusSmallFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size: 24,
DPI: dpi,
Hinting: font.HintingFull,
})
if err != nil {
log.Fatal(err)
}
mplusNormalFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size: 32,
DPI: dpi,
Hinting: font.HintingFull,
})
if err != nil {
log.Fatal(err)
}
mplusBigFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size: 48,
DPI: dpi,
Hinting: font.HintingFull,
})
if err != nil {
log.Fatal(err)
}
}
// TileData represents a tile information like a value and a position.
type TileData struct {
value int
x int
y int
}
// Tile represents a tile information including TileData and animation states.
type Tile struct {
current TileData
// next represents a next tile information after moving.
// next is empty when the tile is not about to move.
next TileData
movingCount int
startPoppingCount int
poppingCount int
}
// Pos returns the tile's current position.
// Pos is used only at testing so far.
func (t *Tile) Pos() (int, int) {
return t.current.x, t.current.y
}
// NextPos returns the tile's next position.
// NextPos is used only at testing so far.
func (t *Tile) NextPos() (int, int) {
return t.next.x, t.next.y
}
// Value returns the tile's current value.
// Value is used only at testing so far.
func (t *Tile) Value() int {
return t.current.value
}
// NextValue returns the tile's current value.
// NextValue is used only at testing so far.
func (t *Tile) NextValue() int {
return t.next.value
}
// NewTile creates a new Tile object.
func NewTile(value int, x, y int) *Tile {
return &Tile{
current: TileData{
value: value,
x: x,
y: y,
},
startPoppingCount: maxPoppingCount,
}
}
// IsMoving returns a boolean value indicating if the tile is animating.
func (t *Tile) IsMoving() bool {
return 0 < t.movingCount
}
func (t *Tile) stopAnimation() {
if 0 < t.movingCount {
t.current = t.next
t.next = TileData{}
}
t.movingCount = 0
t.startPoppingCount = 0
t.poppingCount = 0
}
func tileAt(tiles map[*Tile]struct{}, x, y int) *Tile {
var result *Tile
for t := range tiles {
if t.current.x != x || t.current.y != y {
continue
}
if result != nil {
panic("not reach")
}
result = t
}
return result
}
func currentOrNextTileAt(tiles map[*Tile]struct{}, x, y int) *Tile {
var result *Tile
for t := range tiles {
if 0 < t.movingCount {
if t.next.x != x || t.next.y != y || t.next.value == 0 {
continue
}
} else {
if t.current.x != x || t.current.y != y {
continue
}
}
if result != nil {
panic("not reach")
}
result = t
}
return result
}
const (
maxMovingCount = 5
maxPoppingCount = 6
)
// MoveTiles moves tiles in the given tiles map if possible.
// MoveTiles returns true if there are tiles that are to move, otherwise false.
//
// When MoveTiles is called, all tiles must not be about to move.
func MoveTiles(tiles map[*Tile]struct{}, size int, dir Dir) bool {
vx, vy := dir.Vector()
tx := []int{}
ty := []int{}
for i := 0; i < size; i++ {
tx = append(tx, i)
ty = append(ty, i)
}
if vx > 0 {
sort.Sort(sort.Reverse(sort.IntSlice(tx)))
}
if vy > 0 {
sort.Sort(sort.Reverse(sort.IntSlice(ty)))
}
moved := false
for _, j := range ty {
for _, i := range tx {
t := tileAt(tiles, i, j)
if t == nil {
continue
}
if t.next != (TileData{}) {
panic("not reach")
}
if t.IsMoving() {
panic("not reach")
}
// (ii, jj) is the next position for tile t.
// (ii, jj) is updated until a mergeable tile is found or
// the tile t can't be moved any more.
ii := i
jj := j
for {
ni := ii + vx
nj := jj + vy
if ni < 0 || ni >= size || nj < 0 || nj >= size {
break
}
tt := currentOrNextTileAt(tiles, ni, nj)
if tt == nil {
ii = ni
jj = nj
moved = true
continue
}
if t.current.value != tt.current.value {
break
}
if 0 < tt.movingCount && tt.current.value != tt.next.value {
// tt is already being merged with another tile.
// Break here without updating (ii, jj).
break
}
ii = ni
jj = nj
moved = true
break
}
// next is the next state of the tile t.
next := TileData{}
next.value = t.current.value
// If there is a tile at the next position (ii, jj), this should be
// mergeable. Let's merge.
if tt := currentOrNextTileAt(tiles, ii, jj); tt != t && tt != nil {
next.value = t.current.value + tt.current.value
tt.next.value = 0
tt.next.x = ii
tt.next.y = jj
tt.movingCount = maxMovingCount
}
next.x = ii
next.y = jj
if t.current != next {
t.next = next
t.movingCount = maxMovingCount
}
}
}
if !moved {
for t := range tiles {
t.next = TileData{}
t.movingCount = 0
}
}
return moved
}
func addRandomTile(tiles map[*Tile]struct{}, size int) error {
cells := make([]bool, size*size)
for t := range tiles {
if t.IsMoving() {
panic("not reach")
}
i := t.current.x + t.current.y*size
cells[i] = true
}
availableCells := []int{}
for i, b := range cells {
if b {
continue
}
availableCells = append(availableCells, i)
}
if len(availableCells) == 0 {
return errors.New("twenty48: there is no space to add a new tile")
}
c := availableCells[rand.Intn(len(availableCells))]
v := 2
if rand.Intn(10) == 0 {
v = 4
}
x := c % size
y := c / size
t := NewTile(v, x, y)
tiles[t] = struct{}{}
return nil
}
// Update updates the tile's animation states.
func (t *Tile) Update() error {
switch {
case 0 < t.movingCount:
t.movingCount--
if t.movingCount == 0 {
if t.current.value != t.next.value && 0 < t.next.value {
t.poppingCount = maxPoppingCount
}
t.current = t.next
t.next = TileData{}
}
case 0 < t.startPoppingCount:
t.startPoppingCount--
case 0 < t.poppingCount:
t.poppingCount--
}
return nil
}
func colorToScale(clr color.Color) (float64, float64, float64, float64) {
r, g, b, a := clr.RGBA()
rf := float64(r) / 0xffff
gf := float64(g) / 0xffff
bf := float64(b) / 0xffff
af := float64(a) / 0xffff
// Convert to non-premultiplied alpha components.
if 0 < af {
rf /= af
gf /= af
bf /= af
}
return rf, gf, bf, af
}
func mean(a, b int, rate float64) int {
return int(float64(a)*(1-rate) + float64(b)*rate)
}
func meanF(a, b float64, rate float64) float64 {
return a*(1-rate) + b*rate
}
const (
tileSize = 80
tileMargin = 4
)
var (
tileImage *ebiten.Image
)
func init() {
tileImage, _ = ebiten.NewImage(tileSize, tileSize, ebiten.FilterDefault)
tileImage.Fill(color.White)
}
// Draw draws the current tile to the given boardImage.
func (t *Tile) Draw(boardImage *ebiten.Image) {
i, j := t.current.x, t.current.y
ni, nj := t.next.x, t.next.y
v := t.current.value
if v == 0 {
return
}
op := &ebiten.DrawImageOptions{}
x := i*tileSize + (i+1)*tileMargin
y := j*tileSize + (j+1)*tileMargin
nx := ni*tileSize + (ni+1)*tileMargin
ny := nj*tileSize + (nj+1)*tileMargin
switch {
case 0 < t.movingCount:
rate := 1 - float64(t.movingCount)/maxMovingCount
x = mean(x, nx, rate)
y = mean(y, ny, rate)
case 0 < t.startPoppingCount:
rate := 1 - float64(t.startPoppingCount)/float64(maxPoppingCount)
scale := meanF(0.0, 1.0, rate)
op.GeoM.Translate(float64(-tileSize/2), float64(-tileSize/2))
op.GeoM.Scale(scale, scale)
op.GeoM.Translate(float64(tileSize/2), float64(tileSize/2))
case 0 < t.poppingCount:
const maxScale = 1.2
rate := 0.0
if maxPoppingCount*2/3 <= t.poppingCount {
// 0 to 1
rate = 1 - float64(t.poppingCount-2*maxPoppingCount/3)/float64(maxPoppingCount/3)
} else {
// 1 to 0
rate = float64(t.poppingCount) / float64(maxPoppingCount*2/3)
}
scale := meanF(1.0, maxScale, rate)
op.GeoM.Translate(float64(-tileSize/2), float64(-tileSize/2))
op.GeoM.Scale(scale, scale)
op.GeoM.Translate(float64(tileSize/2), float64(tileSize/2))
}
op.GeoM.Translate(float64(x), float64(y))
r, g, b, a := colorToScale(tileBackgroundColor(v))
op.ColorM.Scale(r, g, b, a)
boardImage.DrawImage(tileImage, op)
str := strconv.Itoa(v)
f := mplusBigFont
switch {
case 3 < len(str):
f = mplusSmallFont
case 2 < len(str):
f = mplusNormalFont
}
bound, _ := font.BoundString(f, str)
w := (bound.Max.X - bound.Min.X).Ceil()
h := (bound.Max.Y - bound.Min.Y).Ceil()
x = x + (tileSize-w)/2
y = y + (tileSize-h)/2 + h
text.Draw(boardImage, str, f, x, y, tileColor(v))
}