mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2025-01-24 18:02:02 +01:00
0b7ba8e573
Handling GeoM projection on CPU may seem like a weird choice, given how fast GPU is, but it pays off: * You only have to do a very small subset of the actual matrix multiply. * You don't have to construct a matrix in the vertex shader. * Six fewer float32 values per vertex. * You do still have to do the matrix computation for each vertex, though. Signed-off-by: Seebs <seebs@seebs.net>
186 lines
3.5 KiB
Go
186 lines
3.5 KiB
Go
// Copyright 2014 Hajime Hoshi
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package affine
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
// GeoMDim is a dimension of a GeoM.
|
|
const GeoMDim = 3
|
|
|
|
// A GeoM represents a matrix to transform geometry when rendering an image.
|
|
//
|
|
// The initial value is identity.
|
|
type GeoM struct {
|
|
a float64
|
|
b float64
|
|
c float64
|
|
d float64
|
|
tx float64
|
|
ty float64
|
|
inited bool
|
|
}
|
|
|
|
func (g *GeoM) Reset() {
|
|
g.inited = false
|
|
}
|
|
|
|
func (g *GeoM) Apply(x, y float64) (x2, y2 float64) {
|
|
if !g.inited {
|
|
return x, y
|
|
}
|
|
return g.a*x + g.b*y + g.tx, g.c*x + g.d*y + g.ty
|
|
}
|
|
|
|
func (g *GeoM) Apply32(x, y float64) (x2, y2 float32) {
|
|
if !g.inited {
|
|
return float32(x), float32(y)
|
|
}
|
|
return float32(g.a*x + g.b*y + g.tx), float32(g.c*x + g.d*y + g.ty)
|
|
}
|
|
|
|
func (g *GeoM) Elements() (a, b, c, d, tx, ty float64) {
|
|
if !g.inited {
|
|
return 1, 0, 0, 1, 0, 0
|
|
}
|
|
return g.a, g.b, g.c, g.d, g.tx, g.ty
|
|
}
|
|
|
|
func (g *GeoM) init() {
|
|
g.a = 1
|
|
g.b = 0
|
|
g.c = 0
|
|
g.d = 1
|
|
g.tx = 0
|
|
g.ty = 0
|
|
g.inited = true
|
|
}
|
|
|
|
// SetElement sets an element at (i, j).
|
|
func (g *GeoM) SetElement(i, j int, element float64) {
|
|
if !g.inited {
|
|
g.init()
|
|
}
|
|
switch {
|
|
case i == 0 && j == 0:
|
|
g.a = element
|
|
case i == 0 && j == 1:
|
|
g.b = element
|
|
case i == 0 && j == 2:
|
|
g.tx = element
|
|
case i == 1 && j == 0:
|
|
g.c = element
|
|
case i == 1 && j == 1:
|
|
g.d = element
|
|
case i == 1 && j == 2:
|
|
g.ty = element
|
|
default:
|
|
panic("affine: i or j is out of index")
|
|
}
|
|
}
|
|
|
|
// Concat multiplies a geometry matrix with the other geometry matrix.
|
|
// This is same as muptiplying the matrix other and the matrix g in this order.
|
|
func (g *GeoM) Concat(other *GeoM) {
|
|
if !g.inited {
|
|
g.init()
|
|
}
|
|
if !other.inited {
|
|
other.init()
|
|
}
|
|
a, b, c, d, tx, ty := g.a, g.b, g.c, g.d, g.tx, g.ty
|
|
g.a = other.a*a + other.b*c
|
|
g.b = other.a*b + other.b*d
|
|
g.tx = other.a*tx + other.b*ty + other.tx
|
|
g.c = other.c*a + other.d*c
|
|
g.d = other.c*b + other.d*d
|
|
g.ty = other.c*tx + other.d*ty + other.ty
|
|
}
|
|
|
|
// Add is deprecated.
|
|
func (g *GeoM) Add(other GeoM) {
|
|
if !g.inited {
|
|
g.init()
|
|
}
|
|
if !other.inited {
|
|
other.init()
|
|
}
|
|
g.a += other.a
|
|
g.b += other.b
|
|
g.c += other.c
|
|
g.d += other.d
|
|
g.tx += other.tx
|
|
g.ty += other.ty
|
|
}
|
|
|
|
// Scale scales the matrix by (x, y).
|
|
func (g *GeoM) Scale(x, y float64) {
|
|
if !g.inited {
|
|
g.a = x
|
|
g.b = 0
|
|
g.c = 0
|
|
g.d = y
|
|
g.tx = 0
|
|
g.ty = 0
|
|
g.inited = true
|
|
return
|
|
}
|
|
g.a *= x
|
|
g.b *= x
|
|
g.tx *= x
|
|
g.c *= y
|
|
g.d *= y
|
|
g.ty *= y
|
|
}
|
|
|
|
// Translate translates the matrix by (x, y).
|
|
func (g *GeoM) Translate(tx, ty float64) {
|
|
if !g.inited {
|
|
g.a = 1
|
|
g.b = 0
|
|
g.c = 0
|
|
g.d = 1
|
|
g.tx = tx
|
|
g.ty = ty
|
|
g.inited = true
|
|
return
|
|
}
|
|
g.tx += tx
|
|
g.ty += ty
|
|
}
|
|
|
|
// Rotate rotates the matrix by theta.
|
|
func (g *GeoM) Rotate(theta float64) {
|
|
sin, cos := math.Sincos(theta)
|
|
if !g.inited {
|
|
g.a = cos
|
|
g.b = -sin
|
|
g.c = sin
|
|
g.d = cos
|
|
g.tx = 0
|
|
g.ty = 0
|
|
g.inited = true
|
|
return
|
|
}
|
|
a, b, c, d, tx, ty := g.a, g.b, g.c, g.d, g.tx, g.ty
|
|
g.a = cos*a - sin*c
|
|
g.b = cos*b - sin*d
|
|
g.tx = cos*tx - sin*ty
|
|
g.c = sin*a + cos*c
|
|
g.d = sin*b + cos*d
|
|
g.ty = sin*tx + cos*ty
|
|
}
|