ebiten/internal/atlas/image.go

811 lines
21 KiB
Go

// Copyright 2018 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package atlas
import (
"fmt"
"image"
"math"
"runtime"
"sync"
"github.com/hajimehoshi/ebiten/v2/internal/affine"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/packing"
"github.com/hajimehoshi/ebiten/v2/internal/restorable"
)
var (
minSize = 0
maxSize = 0
)
type temporaryBytes struct {
pixels []byte
pos int
notFullyUsedTime int
}
var theTemporaryBytes temporaryBytes
func temporaryBytesSize(size int) int {
l := 16
for l < size {
l *= 2
}
return l
}
// alloc allocates the pixels and reutrns it.
// Be careful that the returned pixels might not be zero-cleared.
func (t *temporaryBytes) alloc(size int) []byte {
if len(t.pixels) < t.pos+size {
t.pixels = make([]byte, max(len(t.pixels)*2, temporaryBytesSize(size)))
t.pos = 0
}
pix := t.pixels[t.pos : t.pos+size]
t.pos += size
return pix
}
func (t *temporaryBytes) resetAtFrameEnd() {
const maxNotFullyUsedTime = 60
if temporaryBytesSize(t.pos) < len(t.pixels) {
if t.notFullyUsedTime < maxNotFullyUsedTime {
t.notFullyUsedTime++
}
} else {
t.notFullyUsedTime = 0
}
// Let the pixels GCed if this is not used for a while.
if t.notFullyUsedTime == maxNotFullyUsedTime && len(t.pixels) > 0 {
t.pixels = nil
t.notFullyUsedTime = 0
}
// Reset the position and reuse the allocated bytes.
// t.pixels should already be sent to GPU, then this can be reused.
t.pos = 0
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func resolveDeferred() {
deferredM.Lock()
fs := deferred
deferred = nil
deferredM.Unlock()
for _, f := range fs {
f()
}
}
// baseCountToPutOnAtlas represents the base time duration when the image can be put onto an atlas.
// Actual time duration is increased in an exponential way for each usages as a rendering target.
const baseCountToPutOnAtlas = 10
func putImagesOnAtlas(graphicsDriver graphicsdriver.Graphics) error {
for i := range imagesToPutOnAtlas {
i.usedAsSourceCount++
if i.usedAsSourceCount >= baseCountToPutOnAtlas*(1<<uint(min(i.isolatedCount, 31))) {
if err := i.putOnAtlas(graphicsDriver); err != nil {
return err
}
i.usedAsSourceCount = 0
delete(imagesToPutOnAtlas, i)
}
}
// Reset the images. The images will be registered again when it is used as a rendering source.
for k := range imagesToPutOnAtlas {
delete(imagesToPutOnAtlas, k)
}
return nil
}
type backend struct {
// restorable is an atlas on which there might be multiple images.
restorable *restorable.Image
// page is an atlas map. Each part is called a node.
// If page is nil, the backend's image is isolated and not on an atlas.
page *packing.Page
}
func (b *backend) tryAlloc(width, height int) (*packing.Node, bool) {
// If the region is allocated without any extension, that's fine.
if n := b.page.Alloc(width, height); n != nil {
return n, true
}
nExtended := 1
var n *packing.Node
for {
if !b.page.Extend(nExtended) {
// The page can't be extended any more. Return as failure.
return nil, false
}
nExtended++
n = b.page.Alloc(width, height)
if n != nil {
b.page.CommitExtension()
break
}
b.page.RollbackExtension()
}
s := b.page.Size()
b.restorable = b.restorable.Extend(s, s)
if n == nil {
panic("atlas: Alloc result must not be nil at TryAlloc")
}
return n, true
}
var (
// backendsM is a mutex for critical sections of the backend and packing.Node objects.
backendsM sync.Mutex
initOnce sync.Once
// theBackends is a set of atlases.
theBackends = []*backend{}
imagesToPutOnAtlas = map[*Image]struct{}{}
deferred []func()
// deferredM is a mutext for the slice operations. This must not be used for other usages.
deferredM sync.Mutex
)
func init() {
// Lock the mutex before a frame begins.
//
// In each frame, restoring images and resolving images happen respectively:
//
// [Restore -> Resolve] -> [Restore -> Resolve] -> ...
//
// Between each frame, any image operations are not permitted, or stale images would remain when restoring
// (#913).
backendsM.Lock()
}
type ImageType int
const (
ImageTypeRegular ImageType = iota
ImageTypeScreen
ImageTypeVolatile
ImageTypeUnmanaged
)
// Image is a rectangle pixel set that might be on an atlas.
type Image struct {
width int
height int
imageType ImageType
disposed bool
backend *backend
node *packing.Node
// usedAsSourceCount represents how long the image is used as a rendering source and kept not modified with
// DrawTriangles.
// In the current implementation, if an image is being modified by DrawTriangles, the image is separated from
// a restorable image on an atlas by ensureIsolated.
//
// usedAsSourceCount is increased if the image is used as a rendering source, or set to 0 if the image is
// modified.
//
// WritePixels doesn't affect this value since WritePixels can be done on images on an atlas.
usedAsSourceCount int
// isolatedCount represents how many times the image on a texture atlas is changed into an isolated image.
// isolatedCount affects the calculation when to put the image onto a texture atlas again.
isolatedCount int
}
// moveTo moves its content to the given image dst.
// After moveTo is called, the image i is no longer available.
//
// moveTo is smilar to C++'s move semantics.
func (i *Image) moveTo(dst *Image) {
dst.dispose(false)
*dst = *i
// i is no longer available but Dispose must not be called
// since i and dst have the same values like node.
runtime.SetFinalizer(i, nil)
}
func (i *Image) isOnAtlas() bool {
return i.node != nil
}
func (i *Image) resetUsedAsSourceCount() {
i.usedAsSourceCount = 0
delete(imagesToPutOnAtlas, i)
}
func (i *Image) paddingSize() int {
if i.imageType == ImageTypeRegular {
return 1
}
return 0
}
func (i *Image) ensureIsolated() {
i.resetUsedAsSourceCount()
if i.backend == nil {
i.allocate(false)
return
}
if !i.isOnAtlas() {
return
}
ox, oy, w, h := i.regionWithPadding()
dx0 := float32(0)
dy0 := float32(0)
dx1 := float32(w)
dy1 := float32(h)
sx0 := float32(ox)
sy0 := float32(oy)
sx1 := float32(ox + w)
sy1 := float32(oy + h)
sw, sh := i.backend.restorable.InternalSize()
sx0 /= float32(sw)
sy0 /= float32(sh)
sx1 /= float32(sw)
sy1 /= float32(sh)
typ := restorable.ImageTypeRegular
if i.imageType == ImageTypeVolatile {
typ = restorable.ImageTypeVolatile
}
newImg := restorable.NewImage(w, h, typ)
vs := []float32{
dx0, dy0, sx0, sy0, 1, 1, 1, 1,
dx1, dy0, sx1, sy0, 1, 1, 1, 1,
dx0, dy1, sx0, sy1, 1, 1, 1, 1,
dx1, dy1, sx1, sy1, 1, 1, 1, 1,
}
is := graphics.QuadIndices()
srcs := [graphics.ShaderImageCount]*restorable.Image{i.backend.restorable}
var offsets [graphics.ShaderImageCount - 1][2]float32
dstRegion := graphicsdriver.Region{
X: float32(i.paddingSize()),
Y: float32(i.paddingSize()),
Width: float32(w - 2*i.paddingSize()),
Height: float32(h - 2*i.paddingSize()),
}
newImg.DrawTriangles(srcs, offsets, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dstRegion, graphicsdriver.Region{}, nil, nil, false)
i.dispose(false)
i.backend = &backend{
restorable: newImg,
}
i.isolatedCount++
}
func (i *Image) putOnAtlas(graphicsDriver graphicsdriver.Graphics) error {
if i.backend == nil {
i.allocate(true)
return nil
}
if i.isOnAtlas() {
return nil
}
if !i.canBePutOnAtlas() {
panic("atlas: putOnAtlas cannot be called on a image that cannot be on an atlas")
}
if i.imageType != ImageTypeRegular {
panic(fmt.Sprintf("atlas: the image type must be ImageTypeRegular but %d", i.imageType))
}
newI := NewImage(i.width, i.height, ImageTypeRegular)
w, h := float32(i.width), float32(i.height)
vs := graphics.QuadVertices(0, 0, w, h, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1)
is := graphics.QuadIndices()
dr := graphicsdriver.Region{
X: 0,
Y: 0,
Width: w,
Height: h,
}
newI.drawTriangles([graphics.ShaderImageCount]*Image{i}, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, nil, nil, false, true)
newI.moveTo(i)
i.usedAsSourceCount = 0
return nil
}
func (i *Image) regionWithPadding() (x, y, width, height int) {
if i.backend == nil {
panic("atlas: backend must not be nil: not allocated yet?")
}
if !i.isOnAtlas() {
return 0, 0, i.width + 2*i.paddingSize(), i.height + 2*i.paddingSize()
}
return i.node.Region()
}
func (i *Image) processSrc(src *Image) {
if src == nil {
return
}
if src.disposed {
panic("atlas: the drawing source image must not be disposed (DrawTriangles)")
}
if src.backend == nil {
src.allocate(true)
}
// Compare i and source images after ensuring i is not on an atlas, or
// i and a source image might share the same atlas even though i != src.
if i.backend.restorable == src.backend.restorable {
panic("atlas: Image.DrawTriangles: source must be different from the receiver")
}
}
// DrawTriangles draws triangles with the given image.
//
// The vertex floats are:
//
// 0: Destination X in pixels
// 1: Destination Y in pixels
// 2: Source X in pixels (the upper-left is (0, 0))
// 3: Source Y in pixels
// 4: Color R [0.0-1.0]
// 5: Color G
// 6: Color B
// 7: Color Y
func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, colorm affine.ColorM, mode graphicsdriver.CompositeMode, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool) {
backendsM.Lock()
defer backendsM.Unlock()
i.drawTriangles(srcs, vertices, indices, colorm, mode, filter, address, dstRegion, srcRegion, subimageOffsets, shader, uniforms, evenOdd, false)
}
func (i *Image) drawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, colorm affine.ColorM, mode graphicsdriver.CompositeMode, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, keepOnAtlas bool) {
if i.disposed {
panic("atlas: the drawing target image must not be disposed (DrawTriangles)")
}
if keepOnAtlas {
if i.backend == nil {
i.allocate(true)
}
} else {
i.ensureIsolated()
}
for _, src := range srcs {
i.processSrc(src)
}
x, y, _, _ := i.regionWithPadding()
dx := float32(x + i.paddingSize())
dy := float32(y + i.paddingSize())
// TODO: Check if dstRegion does not to violate the region.
dstRegion.X += dx
dstRegion.Y += dy
var oxf, oyf float32
if srcs[0] != nil {
ox, oy, _, _ := srcs[0].regionWithPadding()
ox += srcs[0].paddingSize()
oy += srcs[0].paddingSize()
oxf, oyf = float32(ox), float32(oy)
sw, sh := srcs[0].backend.restorable.InternalSize()
swf, shf := float32(sw), float32(sh)
n := len(vertices)
for i := 0; i < n; i += graphics.VertexFloatCount {
vertices[i] = adjustDestinationPixel(vertices[i] + dx)
vertices[i+1] = adjustDestinationPixel(vertices[i+1] + dy)
vertices[i+2] = (vertices[i+2] + oxf) / swf
vertices[i+3] = (vertices[i+3] + oyf) / shf
}
// srcRegion can be delibarately empty when this is not needed in order to avoid unexpected
// performance issue (#1293).
if srcRegion.Width != 0 && srcRegion.Height != 0 {
srcRegion.X += oxf
srcRegion.Y += oyf
}
} else {
n := len(vertices)
for i := 0; i < n; i += graphics.VertexFloatCount {
vertices[i] = adjustDestinationPixel(vertices[i] + dx)
vertices[i+1] = adjustDestinationPixel(vertices[i+1] + dy)
}
}
var offsets [graphics.ShaderImageCount - 1][2]float32
var s *restorable.Shader
var imgs [graphics.ShaderImageCount]*restorable.Image
if shader == nil {
// Fast path for rendering without a shader (#1355).
imgs[0] = srcs[0].backend.restorable
} else {
for i, subimageOffset := range subimageOffsets {
src := srcs[i+1]
if src == nil {
continue
}
ox, oy, _, _ := src.regionWithPadding()
offsets[i][0] = float32(ox+src.paddingSize()) - oxf + subimageOffset[0]
offsets[i][1] = float32(oy+src.paddingSize()) - oyf + subimageOffset[1]
}
s = shader.shader
for i, src := range srcs {
if src == nil {
continue
}
imgs[i] = src.backend.restorable
}
}
i.backend.restorable.DrawTriangles(imgs, offsets, vertices, indices, colorm, mode, filter, address, dstRegion, srcRegion, s, uniforms, evenOdd)
for _, src := range srcs {
if src == nil {
continue
}
if !src.isOnAtlas() && src.canBePutOnAtlas() {
// src might already registered, but assiging it again is not harmful.
imagesToPutOnAtlas[src] = struct{}{}
}
}
}
// WritePixels replaces the pixels on the image.
func (i *Image) WritePixels(pix []byte, x, y, width, height int) {
backendsM.Lock()
defer backendsM.Unlock()
i.replacePixels(pix, x, y, width, height)
}
func (i *Image) replacePixels(pix []byte, x, y, width, height int) {
if i.disposed {
panic("atlas: the image must not be disposed at replacePixels")
}
if l := 4 * width * height; len(pix) != l {
panic(fmt.Sprintf("atlas: len(p) must be %d but %d", l, len(pix)))
}
i.resetUsedAsSourceCount()
if i.backend == nil {
if pix == nil {
return
}
i.allocate(true)
}
px, py, pw, ph := i.regionWithPadding()
if x != 0 || y != 0 || width != i.width || height != i.height || i.paddingSize() == 0 {
x += px + i.paddingSize()
y += py + i.paddingSize()
if pix == nil {
i.backend.restorable.WritePixels(nil, x, y, width, height)
return
}
// Copy pixels in the case when pix is modified before the graphics command is executed.
pix2 := theTemporaryBytes.alloc(len(pix))
copy(pix2, pix)
i.backend.restorable.WritePixels(pix2, x, y, width, height)
return
}
pixb := theTemporaryBytes.alloc(4 * pw * ph)
// Clear the edges. pixb might not be zero-cleared.
// TODO: These loops assume that paddingSize is 1.
// TODO: Is clearing edges explicitly really needed?
const paddingSize = 1
if paddingSize != i.paddingSize() {
panic(fmt.Sprintf("atlas: replacePixels assumes the padding is always 1 but the actual padding was %d", i.paddingSize()))
}
rowPixels := 4 * pw
for i := 0; i < rowPixels; i++ {
pixb[i] = 0
pixb[rowPixels*(ph-1)+i] = 0
}
for j := 1; j < ph-1; j++ {
pixb[rowPixels*j] = 0
pixb[rowPixels*j+1] = 0
pixb[rowPixels*j+2] = 0
pixb[rowPixels*j+3] = 0
pixb[rowPixels*(j+1)-4] = 0
pixb[rowPixels*(j+1)-3] = 0
pixb[rowPixels*(j+1)-2] = 0
pixb[rowPixels*(j+1)-1] = 0
}
// Copy the content.
for j := 0; j < height; j++ {
copy(pixb[4*((j+paddingSize)*pw+paddingSize):], pix[4*j*width:4*(j+1)*width])
}
x += px
y += py
i.backend.restorable.WritePixels(pixb, x, y, pw, ph)
}
func (i *Image) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte) error {
backendsM.Lock()
defer backendsM.Unlock()
if i.backend == nil || i.backend.restorable == nil {
for i := range pixels {
pixels[i] = 0
}
return nil
}
ps := i.paddingSize()
ox, oy, w, h := i.regionWithPadding()
return i.backend.restorable.ReadPixels(graphicsDriver, pixels, ox+ps, oy+ps, w-ps*2, h-ps*2)
}
// MarkDisposed marks the image as disposed. The actual operation is deferred.
// MarkDisposed can be called from finalizers.
//
// A function from finalizer must not be blocked, but disposing operation can be blocked.
// Defer this operation until it becomes safe. (#913)
func (i *Image) MarkDisposed() {
// As MarkDisposed can be invoked from finalizers, backendsM should not be used.
deferredM.Lock()
deferred = append(deferred, func() {
i.dispose(true)
})
deferredM.Unlock()
}
func (i *Image) dispose(markDisposed bool) {
defer func() {
if markDisposed {
i.disposed = true
}
i.backend = nil
i.node = nil
if markDisposed {
runtime.SetFinalizer(i, nil)
}
}()
i.resetUsedAsSourceCount()
if i.disposed {
return
}
if i.backend == nil {
// Not allocated yet.
return
}
if !i.isOnAtlas() {
i.backend.restorable.Dispose()
return
}
i.backend.page.Free(i.node)
if !i.backend.page.IsEmpty() {
// As this part can be reused, this should be cleared explicitly.
i.backend.restorable.ClearPixels(i.regionWithPadding())
return
}
i.backend.restorable.Dispose()
index := -1
for idx, sh := range theBackends {
if sh == i.backend {
index = idx
break
}
}
if index == -1 {
panic("atlas: backend not found at an image being disposed")
}
theBackends = append(theBackends[:index], theBackends[index+1:]...)
}
func NewImage(width, height int, imageType ImageType) *Image {
// Actual allocation is done lazily, and the lock is not needed.
return &Image{
width: width,
height: height,
imageType: imageType,
}
}
func (i *Image) canBePutOnAtlas() bool {
if minSize == 0 || maxSize == 0 {
panic("atlas: minSize or maxSize must be initialized")
}
if i.imageType != ImageTypeRegular {
return false
}
return i.width+2*i.paddingSize() <= maxSize && i.height+2*i.paddingSize() <= maxSize
}
func (i *Image) allocate(putOnAtlas bool) {
if i.backend != nil {
panic("atlas: the image is already allocated")
}
runtime.SetFinalizer(i, (*Image).MarkDisposed)
if i.imageType == ImageTypeScreen {
// A screen image doesn't have a padding.
i.backend = &backend{
restorable: restorable.NewImage(i.width, i.height, restorable.ImageTypeScreen),
}
return
}
if !putOnAtlas || !i.canBePutOnAtlas() {
if i.width+2*i.paddingSize() > maxSize || i.height+2*i.paddingSize() > maxSize {
panic(fmt.Sprintf("atlas: the image being put on an atlas is too big: width: %d, height: %d", i.width, i.height))
}
typ := restorable.ImageTypeRegular
if i.imageType == ImageTypeVolatile {
typ = restorable.ImageTypeVolatile
}
i.backend = &backend{
restorable: restorable.NewImage(i.width+2*i.paddingSize(), i.height+2*i.paddingSize(), typ),
}
return
}
for _, b := range theBackends {
if n, ok := b.tryAlloc(i.width+2*i.paddingSize(), i.height+2*i.paddingSize()); ok {
i.backend = b
i.node = n
return
}
}
size := minSize
for i.width+2*i.paddingSize() > size || i.height+2*i.paddingSize() > size {
if size == maxSize {
panic(fmt.Sprintf("atlas: the image being put on an atlas is too big: width: %d, height: %d", i.width, i.height))
}
size *= 2
}
typ := restorable.ImageTypeRegular
if i.imageType == ImageTypeVolatile {
typ = restorable.ImageTypeVolatile
}
b := &backend{
restorable: restorable.NewImage(size, size, typ),
page: packing.NewPage(size, maxSize),
}
theBackends = append(theBackends, b)
n := b.page.Alloc(i.width+2*i.paddingSize(), i.height+2*i.paddingSize())
if n == nil {
panic("atlas: Alloc result must not be nil at allocate")
}
i.backend = b
i.node = n
}
func (i *Image) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, path string, blackbg bool) error {
backendsM.Lock()
defer backendsM.Unlock()
return i.backend.restorable.Dump(graphicsDriver, path, blackbg, image.Rect(i.paddingSize(), i.paddingSize(), i.width+i.paddingSize(), i.height+i.paddingSize()))
}
func EndFrame(graphicsDriver graphicsdriver.Graphics) error {
backendsM.Lock()
theTemporaryBytes.resetAtFrameEnd()
return restorable.ResolveStaleImages(graphicsDriver)
}
func BeginFrame(graphicsDriver graphicsdriver.Graphics) error {
defer backendsM.Unlock()
var err error
initOnce.Do(func() {
err = restorable.InitializeGraphicsDriverState(graphicsDriver)
if err != nil {
return
}
if len(theBackends) != 0 {
panic("atlas: all the images must be not on an atlas before the game starts")
}
// minSize and maxSize can already be set for testings.
if minSize == 0 {
minSize = 1024
}
if maxSize == 0 {
maxSize = restorable.MaxImageSize(graphicsDriver)
}
})
if err != nil {
return err
}
// Restore images first before other image manipulations (#2075).
if err := restorable.RestoreIfNeeded(graphicsDriver); err != nil {
return err
}
resolveDeferred()
if err := putImagesOnAtlas(graphicsDriver); err != nil {
return err
}
return nil
}
func DumpImages(graphicsDriver graphicsdriver.Graphics, dir string) error {
backendsM.Lock()
defer backendsM.Unlock()
return restorable.DumpImages(graphicsDriver, dir)
}
func adjustDestinationPixel(x float32) float32 {
// Avoid the center of the pixel, which is problematic (#929, #1171).
// Instead, align the vertices with about 1/3 pixels.
ix := float32(math.Floor(float64(x)))
frac := x - ix
switch {
case frac < 3.0/16.0:
return ix
case frac < 8.0/16.0:
return ix + 5.0/16.0
case frac < 13.0/16.0:
return ix + 11.0/16.0
default:
return ix + 16.0/16.0
}
}