ebiten/internal/cglfw/wayland-xdg-shell-client-protocol_linbsd.h
2023-08-04 01:09:48 +09:00

2098 lines
71 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: 2023 The Ebitengine Authors
//go:build (freebsd || linux || netbsd || openbsd) && wayland
// Generated by wayland-scanner 1.18.0
#ifndef XDG_SHELL_CLIENT_PROTOCOL_H
#define XDG_SHELL_CLIENT_PROTOCOL_H
#include <stdint.h>
#include <stddef.h>
#include "wayland-client.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @page page_xdg_shell The xdg_shell protocol
* @section page_ifaces_xdg_shell Interfaces
* - @subpage page_iface_xdg_wm_base - create desktop-style surfaces
* - @subpage page_iface_xdg_positioner - child surface positioner
* - @subpage page_iface_xdg_surface - desktop user interface surface base interface
* - @subpage page_iface_xdg_toplevel - toplevel surface
* - @subpage page_iface_xdg_popup - short-lived, popup surfaces for menus
* @section page_copyright_xdg_shell Copyright
* <pre>
*
* Copyright © 2008-2013 Kristian Høgsberg
* Copyright © 2013 Rafael Antognolli
* Copyright © 2013 Jasper St. Pierre
* Copyright © 2010-2013 Intel Corporation
* Copyright © 2015-2017 Samsung Electronics Co., Ltd
* Copyright © 2015-2017 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
* </pre>
*/
struct wl_output;
struct wl_seat;
struct wl_surface;
struct xdg_popup;
struct xdg_positioner;
struct xdg_surface;
struct xdg_toplevel;
struct xdg_wm_base;
/**
* @page page_iface_xdg_wm_base xdg_wm_base
* @section page_iface_xdg_wm_base_desc Description
*
* The xdg_wm_base interface is exposed as a global object enabling clients
* to turn their wl_surfaces into windows in a desktop environment. It
* defines the basic functionality needed for clients and the compositor to
* create windows that can be dragged, resized, maximized, etc, as well as
* creating transient windows such as popup menus.
* @section page_iface_xdg_wm_base_api API
* See @ref iface_xdg_wm_base.
*/
/**
* @defgroup iface_xdg_wm_base The xdg_wm_base interface
*
* The xdg_wm_base interface is exposed as a global object enabling clients
* to turn their wl_surfaces into windows in a desktop environment. It
* defines the basic functionality needed for clients and the compositor to
* create windows that can be dragged, resized, maximized, etc, as well as
* creating transient windows such as popup menus.
*/
extern const struct wl_interface xdg_wm_base_interface;
/**
* @page page_iface_xdg_positioner xdg_positioner
* @section page_iface_xdg_positioner_desc Description
*
* The xdg_positioner provides a collection of rules for the placement of a
* child surface relative to a parent surface. Rules can be defined to ensure
* the child surface remains within the visible area's borders, and to
* specify how the child surface changes its position, such as sliding along
* an axis, or flipping around a rectangle. These positioner-created rules are
* constrained by the requirement that a child surface must intersect with or
* be at least partially adjacent to its parent surface.
*
* See the various requests for details about possible rules.
*
* At the time of the request, the compositor makes a copy of the rules
* specified by the xdg_positioner. Thus, after the request is complete the
* xdg_positioner object can be destroyed or reused; further changes to the
* object will have no effect on previous usages.
*
* For an xdg_positioner object to be considered complete, it must have a
* non-zero size set by set_size, and a non-zero anchor rectangle set by
* set_anchor_rect. Passing an incomplete xdg_positioner object when
* positioning a surface raises an error.
* @section page_iface_xdg_positioner_api API
* See @ref iface_xdg_positioner.
*/
/**
* @defgroup iface_xdg_positioner The xdg_positioner interface
*
* The xdg_positioner provides a collection of rules for the placement of a
* child surface relative to a parent surface. Rules can be defined to ensure
* the child surface remains within the visible area's borders, and to
* specify how the child surface changes its position, such as sliding along
* an axis, or flipping around a rectangle. These positioner-created rules are
* constrained by the requirement that a child surface must intersect with or
* be at least partially adjacent to its parent surface.
*
* See the various requests for details about possible rules.
*
* At the time of the request, the compositor makes a copy of the rules
* specified by the xdg_positioner. Thus, after the request is complete the
* xdg_positioner object can be destroyed or reused; further changes to the
* object will have no effect on previous usages.
*
* For an xdg_positioner object to be considered complete, it must have a
* non-zero size set by set_size, and a non-zero anchor rectangle set by
* set_anchor_rect. Passing an incomplete xdg_positioner object when
* positioning a surface raises an error.
*/
extern const struct wl_interface xdg_positioner_interface;
/**
* @page page_iface_xdg_surface xdg_surface
* @section page_iface_xdg_surface_desc Description
*
* An interface that may be implemented by a wl_surface, for
* implementations that provide a desktop-style user interface.
*
* It provides a base set of functionality required to construct user
* interface elements requiring management by the compositor, such as
* toplevel windows, menus, etc. The types of functionality are split into
* xdg_surface roles.
*
* Creating an xdg_surface does not set the role for a wl_surface. In order
* to map an xdg_surface, the client must create a role-specific object
* using, e.g., get_toplevel, get_popup. The wl_surface for any given
* xdg_surface can have at most one role, and may not be assigned any role
* not based on xdg_surface.
*
* A role must be assigned before any other requests are made to the
* xdg_surface object.
*
* The client must call wl_surface.commit on the corresponding wl_surface
* for the xdg_surface state to take effect.
*
* Creating an xdg_surface from a wl_surface which has a buffer attached or
* committed is a client error, and any attempts by a client to attach or
* manipulate a buffer prior to the first xdg_surface.configure call must
* also be treated as errors.
*
* After creating a role-specific object and setting it up, the client must
* perform an initial commit without any buffer attached. The compositor
* will reply with an xdg_surface.configure event. The client must
* acknowledge it and is then allowed to attach a buffer to map the surface.
*
* Mapping an xdg_surface-based role surface is defined as making it
* possible for the surface to be shown by the compositor. Note that
* a mapped surface is not guaranteed to be visible once it is mapped.
*
* For an xdg_surface to be mapped by the compositor, the following
* conditions must be met:
* (1) the client has assigned an xdg_surface-based role to the surface
* (2) the client has set and committed the xdg_surface state and the
* role-dependent state to the surface
* (3) the client has committed a buffer to the surface
*
* A newly-unmapped surface is considered to have met condition (1) out
* of the 3 required conditions for mapping a surface if its role surface
* has not been destroyed, i.e. the client must perform the initial commit
* again before attaching a buffer.
* @section page_iface_xdg_surface_api API
* See @ref iface_xdg_surface.
*/
/**
* @defgroup iface_xdg_surface The xdg_surface interface
*
* An interface that may be implemented by a wl_surface, for
* implementations that provide a desktop-style user interface.
*
* It provides a base set of functionality required to construct user
* interface elements requiring management by the compositor, such as
* toplevel windows, menus, etc. The types of functionality are split into
* xdg_surface roles.
*
* Creating an xdg_surface does not set the role for a wl_surface. In order
* to map an xdg_surface, the client must create a role-specific object
* using, e.g., get_toplevel, get_popup. The wl_surface for any given
* xdg_surface can have at most one role, and may not be assigned any role
* not based on xdg_surface.
*
* A role must be assigned before any other requests are made to the
* xdg_surface object.
*
* The client must call wl_surface.commit on the corresponding wl_surface
* for the xdg_surface state to take effect.
*
* Creating an xdg_surface from a wl_surface which has a buffer attached or
* committed is a client error, and any attempts by a client to attach or
* manipulate a buffer prior to the first xdg_surface.configure call must
* also be treated as errors.
*
* After creating a role-specific object and setting it up, the client must
* perform an initial commit without any buffer attached. The compositor
* will reply with an xdg_surface.configure event. The client must
* acknowledge it and is then allowed to attach a buffer to map the surface.
*
* Mapping an xdg_surface-based role surface is defined as making it
* possible for the surface to be shown by the compositor. Note that
* a mapped surface is not guaranteed to be visible once it is mapped.
*
* For an xdg_surface to be mapped by the compositor, the following
* conditions must be met:
* (1) the client has assigned an xdg_surface-based role to the surface
* (2) the client has set and committed the xdg_surface state and the
* role-dependent state to the surface
* (3) the client has committed a buffer to the surface
*
* A newly-unmapped surface is considered to have met condition (1) out
* of the 3 required conditions for mapping a surface if its role surface
* has not been destroyed, i.e. the client must perform the initial commit
* again before attaching a buffer.
*/
extern const struct wl_interface xdg_surface_interface;
/**
* @page page_iface_xdg_toplevel xdg_toplevel
* @section page_iface_xdg_toplevel_desc Description
*
* This interface defines an xdg_surface role which allows a surface to,
* among other things, set window-like properties such as maximize,
* fullscreen, and minimize, set application-specific metadata like title and
* id, and well as trigger user interactive operations such as interactive
* resize and move.
*
* Unmapping an xdg_toplevel means that the surface cannot be shown
* by the compositor until it is explicitly mapped again.
* All active operations (e.g., move, resize) are canceled and all
* attributes (e.g. title, state, stacking, ...) are discarded for
* an xdg_toplevel surface when it is unmapped. The xdg_toplevel returns to
* the state it had right after xdg_surface.get_toplevel. The client
* can re-map the toplevel by perfoming a commit without any buffer
* attached, waiting for a configure event and handling it as usual (see
* xdg_surface description).
*
* Attaching a null buffer to a toplevel unmaps the surface.
* @section page_iface_xdg_toplevel_api API
* See @ref iface_xdg_toplevel.
*/
/**
* @defgroup iface_xdg_toplevel The xdg_toplevel interface
*
* This interface defines an xdg_surface role which allows a surface to,
* among other things, set window-like properties such as maximize,
* fullscreen, and minimize, set application-specific metadata like title and
* id, and well as trigger user interactive operations such as interactive
* resize and move.
*
* Unmapping an xdg_toplevel means that the surface cannot be shown
* by the compositor until it is explicitly mapped again.
* All active operations (e.g., move, resize) are canceled and all
* attributes (e.g. title, state, stacking, ...) are discarded for
* an xdg_toplevel surface when it is unmapped. The xdg_toplevel returns to
* the state it had right after xdg_surface.get_toplevel. The client
* can re-map the toplevel by perfoming a commit without any buffer
* attached, waiting for a configure event and handling it as usual (see
* xdg_surface description).
*
* Attaching a null buffer to a toplevel unmaps the surface.
*/
extern const struct wl_interface xdg_toplevel_interface;
/**
* @page page_iface_xdg_popup xdg_popup
* @section page_iface_xdg_popup_desc Description
*
* A popup surface is a short-lived, temporary surface. It can be used to
* implement for example menus, popovers, tooltips and other similar user
* interface concepts.
*
* A popup can be made to take an explicit grab. See xdg_popup.grab for
* details.
*
* When the popup is dismissed, a popup_done event will be sent out, and at
* the same time the surface will be unmapped. See the xdg_popup.popup_done
* event for details.
*
* Explicitly destroying the xdg_popup object will also dismiss the popup and
* unmap the surface. Clients that want to dismiss the popup when another
* surface of their own is clicked should dismiss the popup using the destroy
* request.
*
* A newly created xdg_popup will be stacked on top of all previously created
* xdg_popup surfaces associated with the same xdg_toplevel.
*
* The parent of an xdg_popup must be mapped (see the xdg_surface
* description) before the xdg_popup itself.
*
* The client must call wl_surface.commit on the corresponding wl_surface
* for the xdg_popup state to take effect.
* @section page_iface_xdg_popup_api API
* See @ref iface_xdg_popup.
*/
/**
* @defgroup iface_xdg_popup The xdg_popup interface
*
* A popup surface is a short-lived, temporary surface. It can be used to
* implement for example menus, popovers, tooltips and other similar user
* interface concepts.
*
* A popup can be made to take an explicit grab. See xdg_popup.grab for
* details.
*
* When the popup is dismissed, a popup_done event will be sent out, and at
* the same time the surface will be unmapped. See the xdg_popup.popup_done
* event for details.
*
* Explicitly destroying the xdg_popup object will also dismiss the popup and
* unmap the surface. Clients that want to dismiss the popup when another
* surface of their own is clicked should dismiss the popup using the destroy
* request.
*
* A newly created xdg_popup will be stacked on top of all previously created
* xdg_popup surfaces associated with the same xdg_toplevel.
*
* The parent of an xdg_popup must be mapped (see the xdg_surface
* description) before the xdg_popup itself.
*
* The client must call wl_surface.commit on the corresponding wl_surface
* for the xdg_popup state to take effect.
*/
extern const struct wl_interface xdg_popup_interface;
#ifndef XDG_WM_BASE_ERROR_ENUM
#define XDG_WM_BASE_ERROR_ENUM
enum xdg_wm_base_error {
/**
* given wl_surface has another role
*/
XDG_WM_BASE_ERROR_ROLE = 0,
/**
* xdg_wm_base was destroyed before children
*/
XDG_WM_BASE_ERROR_DEFUNCT_SURFACES = 1,
/**
* the client tried to map or destroy a non-topmost popup
*/
XDG_WM_BASE_ERROR_NOT_THE_TOPMOST_POPUP = 2,
/**
* the client specified an invalid popup parent surface
*/
XDG_WM_BASE_ERROR_INVALID_POPUP_PARENT = 3,
/**
* the client provided an invalid surface state
*/
XDG_WM_BASE_ERROR_INVALID_SURFACE_STATE = 4,
/**
* the client provided an invalid positioner
*/
XDG_WM_BASE_ERROR_INVALID_POSITIONER = 5,
};
#endif /* XDG_WM_BASE_ERROR_ENUM */
/**
* @ingroup iface_xdg_wm_base
* @struct xdg_wm_base_listener
*/
struct xdg_wm_base_listener {
/**
* check if the client is alive
*
* The ping event asks the client if it's still alive. Pass the
* serial specified in the event back to the compositor by sending
* a "pong" request back with the specified serial. See
* xdg_wm_base.pong.
*
* Compositors can use this to determine if the client is still
* alive. It's unspecified what will happen if the client doesn't
* respond to the ping request, or in what timeframe. Clients
* should try to respond in a reasonable amount of time.
*
* A compositor is free to ping in any way it wants, but a client
* must always respond to any xdg_wm_base object it created.
* @param serial pass this to the pong request
*/
void (*ping)(void *data,
struct xdg_wm_base *xdg_wm_base,
uint32_t serial);
};
/**
* @ingroup iface_xdg_wm_base
*/
static inline int
xdg_wm_base_add_listener(struct xdg_wm_base *xdg_wm_base,
const struct xdg_wm_base_listener *listener, void *data)
{
return wl_proxy_add_listener((struct wl_proxy *) xdg_wm_base,
(void (**)(void)) listener, data);
}
#define XDG_WM_BASE_DESTROY 0
#define XDG_WM_BASE_CREATE_POSITIONER 1
#define XDG_WM_BASE_GET_XDG_SURFACE 2
#define XDG_WM_BASE_PONG 3
/**
* @ingroup iface_xdg_wm_base
*/
#define XDG_WM_BASE_PING_SINCE_VERSION 1
/**
* @ingroup iface_xdg_wm_base
*/
#define XDG_WM_BASE_DESTROY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_wm_base
*/
#define XDG_WM_BASE_CREATE_POSITIONER_SINCE_VERSION 1
/**
* @ingroup iface_xdg_wm_base
*/
#define XDG_WM_BASE_GET_XDG_SURFACE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_wm_base
*/
#define XDG_WM_BASE_PONG_SINCE_VERSION 1
/** @ingroup iface_xdg_wm_base */
static inline void
xdg_wm_base_set_user_data(struct xdg_wm_base *xdg_wm_base, void *user_data)
{
wl_proxy_set_user_data((struct wl_proxy *) xdg_wm_base, user_data);
}
/** @ingroup iface_xdg_wm_base */
static inline void *
xdg_wm_base_get_user_data(struct xdg_wm_base *xdg_wm_base)
{
return wl_proxy_get_user_data((struct wl_proxy *) xdg_wm_base);
}
static inline uint32_t
xdg_wm_base_get_version(struct xdg_wm_base *xdg_wm_base)
{
return wl_proxy_get_version((struct wl_proxy *) xdg_wm_base);
}
/**
* @ingroup iface_xdg_wm_base
*
* Destroy this xdg_wm_base object.
*
* Destroying a bound xdg_wm_base object while there are surfaces
* still alive created by this xdg_wm_base object instance is illegal
* and will result in a protocol error.
*/
static inline void
xdg_wm_base_destroy(struct xdg_wm_base *xdg_wm_base)
{
wl_proxy_marshal((struct wl_proxy *) xdg_wm_base,
XDG_WM_BASE_DESTROY);
wl_proxy_destroy((struct wl_proxy *) xdg_wm_base);
}
/**
* @ingroup iface_xdg_wm_base
*
* Create a positioner object. A positioner object is used to position
* surfaces relative to some parent surface. See the interface description
* and xdg_surface.get_popup for details.
*/
static inline struct xdg_positioner *
xdg_wm_base_create_positioner(struct xdg_wm_base *xdg_wm_base)
{
struct wl_proxy *id;
id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_wm_base,
XDG_WM_BASE_CREATE_POSITIONER, &xdg_positioner_interface, NULL);
return (struct xdg_positioner *) id;
}
/**
* @ingroup iface_xdg_wm_base
*
* This creates an xdg_surface for the given surface. While xdg_surface
* itself is not a role, the corresponding surface may only be assigned
* a role extending xdg_surface, such as xdg_toplevel or xdg_popup. It is
* illegal to create an xdg_surface for a wl_surface which already has an
* assigned role and this will result in a protocol error.
*
* This creates an xdg_surface for the given surface. An xdg_surface is
* used as basis to define a role to a given surface, such as xdg_toplevel
* or xdg_popup. It also manages functionality shared between xdg_surface
* based surface roles.
*
* See the documentation of xdg_surface for more details about what an
* xdg_surface is and how it is used.
*/
static inline struct xdg_surface *
xdg_wm_base_get_xdg_surface(struct xdg_wm_base *xdg_wm_base, struct wl_surface *surface)
{
struct wl_proxy *id;
id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_wm_base,
XDG_WM_BASE_GET_XDG_SURFACE, &xdg_surface_interface, NULL, surface);
return (struct xdg_surface *) id;
}
/**
* @ingroup iface_xdg_wm_base
*
* A client must respond to a ping event with a pong request or
* the client may be deemed unresponsive. See xdg_wm_base.ping.
*/
static inline void
xdg_wm_base_pong(struct xdg_wm_base *xdg_wm_base, uint32_t serial)
{
wl_proxy_marshal((struct wl_proxy *) xdg_wm_base,
XDG_WM_BASE_PONG, serial);
}
#ifndef XDG_POSITIONER_ERROR_ENUM
#define XDG_POSITIONER_ERROR_ENUM
enum xdg_positioner_error {
/**
* invalid input provided
*/
XDG_POSITIONER_ERROR_INVALID_INPUT = 0,
};
#endif /* XDG_POSITIONER_ERROR_ENUM */
#ifndef XDG_POSITIONER_ANCHOR_ENUM
#define XDG_POSITIONER_ANCHOR_ENUM
enum xdg_positioner_anchor {
XDG_POSITIONER_ANCHOR_NONE = 0,
XDG_POSITIONER_ANCHOR_TOP = 1,
XDG_POSITIONER_ANCHOR_BOTTOM = 2,
XDG_POSITIONER_ANCHOR_LEFT = 3,
XDG_POSITIONER_ANCHOR_RIGHT = 4,
XDG_POSITIONER_ANCHOR_TOP_LEFT = 5,
XDG_POSITIONER_ANCHOR_BOTTOM_LEFT = 6,
XDG_POSITIONER_ANCHOR_TOP_RIGHT = 7,
XDG_POSITIONER_ANCHOR_BOTTOM_RIGHT = 8,
};
#endif /* XDG_POSITIONER_ANCHOR_ENUM */
#ifndef XDG_POSITIONER_GRAVITY_ENUM
#define XDG_POSITIONER_GRAVITY_ENUM
enum xdg_positioner_gravity {
XDG_POSITIONER_GRAVITY_NONE = 0,
XDG_POSITIONER_GRAVITY_TOP = 1,
XDG_POSITIONER_GRAVITY_BOTTOM = 2,
XDG_POSITIONER_GRAVITY_LEFT = 3,
XDG_POSITIONER_GRAVITY_RIGHT = 4,
XDG_POSITIONER_GRAVITY_TOP_LEFT = 5,
XDG_POSITIONER_GRAVITY_BOTTOM_LEFT = 6,
XDG_POSITIONER_GRAVITY_TOP_RIGHT = 7,
XDG_POSITIONER_GRAVITY_BOTTOM_RIGHT = 8,
};
#endif /* XDG_POSITIONER_GRAVITY_ENUM */
#ifndef XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM
#define XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM
/**
* @ingroup iface_xdg_positioner
* vertically resize the surface
*
* Resize the surface vertically so that it is completely unconstrained.
*/
enum xdg_positioner_constraint_adjustment {
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_NONE = 0,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_SLIDE_X = 1,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_SLIDE_Y = 2,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_FLIP_X = 4,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_FLIP_Y = 8,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_RESIZE_X = 16,
XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_RESIZE_Y = 32,
};
#endif /* XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM */
#define XDG_POSITIONER_DESTROY 0
#define XDG_POSITIONER_SET_SIZE 1
#define XDG_POSITIONER_SET_ANCHOR_RECT 2
#define XDG_POSITIONER_SET_ANCHOR 3
#define XDG_POSITIONER_SET_GRAVITY 4
#define XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT 5
#define XDG_POSITIONER_SET_OFFSET 6
#define XDG_POSITIONER_SET_REACTIVE 7
#define XDG_POSITIONER_SET_PARENT_SIZE 8
#define XDG_POSITIONER_SET_PARENT_CONFIGURE 9
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_DESTROY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_SIZE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_ANCHOR_RECT_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_ANCHOR_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_GRAVITY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_OFFSET_SINCE_VERSION 1
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_REACTIVE_SINCE_VERSION 3
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_PARENT_SIZE_SINCE_VERSION 3
/**
* @ingroup iface_xdg_positioner
*/
#define XDG_POSITIONER_SET_PARENT_CONFIGURE_SINCE_VERSION 3
/** @ingroup iface_xdg_positioner */
static inline void
xdg_positioner_set_user_data(struct xdg_positioner *xdg_positioner, void *user_data)
{
wl_proxy_set_user_data((struct wl_proxy *) xdg_positioner, user_data);
}
/** @ingroup iface_xdg_positioner */
static inline void *
xdg_positioner_get_user_data(struct xdg_positioner *xdg_positioner)
{
return wl_proxy_get_user_data((struct wl_proxy *) xdg_positioner);
}
static inline uint32_t
xdg_positioner_get_version(struct xdg_positioner *xdg_positioner)
{
return wl_proxy_get_version((struct wl_proxy *) xdg_positioner);
}
/**
* @ingroup iface_xdg_positioner
*
* Notify the compositor that the xdg_positioner will no longer be used.
*/
static inline void
xdg_positioner_destroy(struct xdg_positioner *xdg_positioner)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_DESTROY);
wl_proxy_destroy((struct wl_proxy *) xdg_positioner);
}
/**
* @ingroup iface_xdg_positioner
*
* Set the size of the surface that is to be positioned with the positioner
* object. The size is in surface-local coordinates and corresponds to the
* window geometry. See xdg_surface.set_window_geometry.
*
* If a zero or negative size is set the invalid_input error is raised.
*/
static inline void
xdg_positioner_set_size(struct xdg_positioner *xdg_positioner, int32_t width, int32_t height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_SIZE, width, height);
}
/**
* @ingroup iface_xdg_positioner
*
* Specify the anchor rectangle within the parent surface that the child
* surface will be placed relative to. The rectangle is relative to the
* window geometry as defined by xdg_surface.set_window_geometry of the
* parent surface.
*
* When the xdg_positioner object is used to position a child surface, the
* anchor rectangle may not extend outside the window geometry of the
* positioned child's parent surface.
*
* If a negative size is set the invalid_input error is raised.
*/
static inline void
xdg_positioner_set_anchor_rect(struct xdg_positioner *xdg_positioner, int32_t x, int32_t y, int32_t width, int32_t height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_ANCHOR_RECT, x, y, width, height);
}
/**
* @ingroup iface_xdg_positioner
*
* Defines the anchor point for the anchor rectangle. The specified anchor
* is used derive an anchor point that the child surface will be
* positioned relative to. If a corner anchor is set (e.g. 'top_left' or
* 'bottom_right'), the anchor point will be at the specified corner;
* otherwise, the derived anchor point will be centered on the specified
* edge, or in the center of the anchor rectangle if no edge is specified.
*/
static inline void
xdg_positioner_set_anchor(struct xdg_positioner *xdg_positioner, uint32_t anchor)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_ANCHOR, anchor);
}
/**
* @ingroup iface_xdg_positioner
*
* Defines in what direction a surface should be positioned, relative to
* the anchor point of the parent surface. If a corner gravity is
* specified (e.g. 'bottom_right' or 'top_left'), then the child surface
* will be placed towards the specified gravity; otherwise, the child
* surface will be centered over the anchor point on any axis that had no
* gravity specified.
*/
static inline void
xdg_positioner_set_gravity(struct xdg_positioner *xdg_positioner, uint32_t gravity)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_GRAVITY, gravity);
}
/**
* @ingroup iface_xdg_positioner
*
* Specify how the window should be positioned if the originally intended
* position caused the surface to be constrained, meaning at least
* partially outside positioning boundaries set by the compositor. The
* adjustment is set by constructing a bitmask describing the adjustment to
* be made when the surface is constrained on that axis.
*
* If no bit for one axis is set, the compositor will assume that the child
* surface should not change its position on that axis when constrained.
*
* If more than one bit for one axis is set, the order of how adjustments
* are applied is specified in the corresponding adjustment descriptions.
*
* The default adjustment is none.
*/
static inline void
xdg_positioner_set_constraint_adjustment(struct xdg_positioner *xdg_positioner, uint32_t constraint_adjustment)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT, constraint_adjustment);
}
/**
* @ingroup iface_xdg_positioner
*
* Specify the surface position offset relative to the position of the
* anchor on the anchor rectangle and the anchor on the surface. For
* example if the anchor of the anchor rectangle is at (x, y), the surface
* has the gravity bottom|right, and the offset is (ox, oy), the calculated
* surface position will be (x + ox, y + oy). The offset position of the
* surface is the one used for constraint testing. See
* set_constraint_adjustment.
*
* An example use case is placing a popup menu on top of a user interface
* element, while aligning the user interface element of the parent surface
* with some user interface element placed somewhere in the popup surface.
*/
static inline void
xdg_positioner_set_offset(struct xdg_positioner *xdg_positioner, int32_t x, int32_t y)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_OFFSET, x, y);
}
/**
* @ingroup iface_xdg_positioner
*
* When set reactive, the surface is reconstrained if the conditions used
* for constraining changed, e.g. the parent window moved.
*
* If the conditions changed and the popup was reconstrained, an
* xdg_popup.configure event is sent with updated geometry, followed by an
* xdg_surface.configure event.
*/
static inline void
xdg_positioner_set_reactive(struct xdg_positioner *xdg_positioner)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_REACTIVE);
}
/**
* @ingroup iface_xdg_positioner
*
* Set the parent window geometry the compositor should use when
* positioning the popup. The compositor may use this information to
* determine the future state the popup should be constrained using. If
* this doesn't match the dimension of the parent the popup is eventually
* positioned against, the behavior is undefined.
*
* The arguments are given in the surface-local coordinate space.
*/
static inline void
xdg_positioner_set_parent_size(struct xdg_positioner *xdg_positioner, int32_t parent_width, int32_t parent_height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_PARENT_SIZE, parent_width, parent_height);
}
/**
* @ingroup iface_xdg_positioner
*
* Set the serial of an xdg_surface.configure event this positioner will be
* used in response to. The compositor may use this information together
* with set_parent_size to determine what future state the popup should be
* constrained using.
*/
static inline void
xdg_positioner_set_parent_configure(struct xdg_positioner *xdg_positioner, uint32_t serial)
{
wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
XDG_POSITIONER_SET_PARENT_CONFIGURE, serial);
}
#ifndef XDG_SURFACE_ERROR_ENUM
#define XDG_SURFACE_ERROR_ENUM
enum xdg_surface_error {
XDG_SURFACE_ERROR_NOT_CONSTRUCTED = 1,
XDG_SURFACE_ERROR_ALREADY_CONSTRUCTED = 2,
XDG_SURFACE_ERROR_UNCONFIGURED_BUFFER = 3,
};
#endif /* XDG_SURFACE_ERROR_ENUM */
/**
* @ingroup iface_xdg_surface
* @struct xdg_surface_listener
*/
struct xdg_surface_listener {
/**
* suggest a surface change
*
* The configure event marks the end of a configure sequence. A
* configure sequence is a set of one or more events configuring
* the state of the xdg_surface, including the final
* xdg_surface.configure event.
*
* Where applicable, xdg_surface surface roles will during a
* configure sequence extend this event as a latched state sent as
* events before the xdg_surface.configure event. Such events
* should be considered to make up a set of atomically applied
* configuration states, where the xdg_surface.configure commits
* the accumulated state.
*
* Clients should arrange their surface for the new states, and
* then send an ack_configure request with the serial sent in this
* configure event at some point before committing the new surface.
*
* If the client receives multiple configure events before it can
* respond to one, it is free to discard all but the last event it
* received.
* @param serial serial of the configure event
*/
void (*configure)(void *data,
struct xdg_surface *xdg_surface,
uint32_t serial);
};
/**
* @ingroup iface_xdg_surface
*/
static inline int
xdg_surface_add_listener(struct xdg_surface *xdg_surface,
const struct xdg_surface_listener *listener, void *data)
{
return wl_proxy_add_listener((struct wl_proxy *) xdg_surface,
(void (**)(void)) listener, data);
}
#define XDG_SURFACE_DESTROY 0
#define XDG_SURFACE_GET_TOPLEVEL 1
#define XDG_SURFACE_GET_POPUP 2
#define XDG_SURFACE_SET_WINDOW_GEOMETRY 3
#define XDG_SURFACE_ACK_CONFIGURE 4
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_CONFIGURE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_DESTROY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_GET_TOPLEVEL_SINCE_VERSION 1
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_GET_POPUP_SINCE_VERSION 1
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_SET_WINDOW_GEOMETRY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_surface
*/
#define XDG_SURFACE_ACK_CONFIGURE_SINCE_VERSION 1
/** @ingroup iface_xdg_surface */
static inline void
xdg_surface_set_user_data(struct xdg_surface *xdg_surface, void *user_data)
{
wl_proxy_set_user_data((struct wl_proxy *) xdg_surface, user_data);
}
/** @ingroup iface_xdg_surface */
static inline void *
xdg_surface_get_user_data(struct xdg_surface *xdg_surface)
{
return wl_proxy_get_user_data((struct wl_proxy *) xdg_surface);
}
static inline uint32_t
xdg_surface_get_version(struct xdg_surface *xdg_surface)
{
return wl_proxy_get_version((struct wl_proxy *) xdg_surface);
}
/**
* @ingroup iface_xdg_surface
*
* Destroy the xdg_surface object. An xdg_surface must only be destroyed
* after its role object has been destroyed.
*/
static inline void
xdg_surface_destroy(struct xdg_surface *xdg_surface)
{
wl_proxy_marshal((struct wl_proxy *) xdg_surface,
XDG_SURFACE_DESTROY);
wl_proxy_destroy((struct wl_proxy *) xdg_surface);
}
/**
* @ingroup iface_xdg_surface
*
* This creates an xdg_toplevel object for the given xdg_surface and gives
* the associated wl_surface the xdg_toplevel role.
*
* See the documentation of xdg_toplevel for more details about what an
* xdg_toplevel is and how it is used.
*/
static inline struct xdg_toplevel *
xdg_surface_get_toplevel(struct xdg_surface *xdg_surface)
{
struct wl_proxy *id;
id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_surface,
XDG_SURFACE_GET_TOPLEVEL, &xdg_toplevel_interface, NULL);
return (struct xdg_toplevel *) id;
}
/**
* @ingroup iface_xdg_surface
*
* This creates an xdg_popup object for the given xdg_surface and gives
* the associated wl_surface the xdg_popup role.
*
* If null is passed as a parent, a parent surface must be specified using
* some other protocol, before committing the initial state.
*
* See the documentation of xdg_popup for more details about what an
* xdg_popup is and how it is used.
*/
static inline struct xdg_popup *
xdg_surface_get_popup(struct xdg_surface *xdg_surface, struct xdg_surface *parent, struct xdg_positioner *positioner)
{
struct wl_proxy *id;
id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_surface,
XDG_SURFACE_GET_POPUP, &xdg_popup_interface, NULL, parent, positioner);
return (struct xdg_popup *) id;
}
/**
* @ingroup iface_xdg_surface
*
* The window geometry of a surface is its "visible bounds" from the
* user's perspective. Client-side decorations often have invisible
* portions like drop-shadows which should be ignored for the
* purposes of aligning, placing and constraining windows.
*
* The window geometry is double buffered, and will be applied at the
* time wl_surface.commit of the corresponding wl_surface is called.
*
* When maintaining a position, the compositor should treat the (x, y)
* coordinate of the window geometry as the top left corner of the window.
* A client changing the (x, y) window geometry coordinate should in
* general not alter the position of the window.
*
* Once the window geometry of the surface is set, it is not possible to
* unset it, and it will remain the same until set_window_geometry is
* called again, even if a new subsurface or buffer is attached.
*
* If never set, the value is the full bounds of the surface,
* including any subsurfaces. This updates dynamically on every
* commit. This unset is meant for extremely simple clients.
*
* The arguments are given in the surface-local coordinate space of
* the wl_surface associated with this xdg_surface.
*
* The width and height must be greater than zero. Setting an invalid size
* will raise an error. When applied, the effective window geometry will be
* the set window geometry clamped to the bounding rectangle of the
* combined geometry of the surface of the xdg_surface and the associated
* subsurfaces.
*/
static inline void
xdg_surface_set_window_geometry(struct xdg_surface *xdg_surface, int32_t x, int32_t y, int32_t width, int32_t height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_surface,
XDG_SURFACE_SET_WINDOW_GEOMETRY, x, y, width, height);
}
/**
* @ingroup iface_xdg_surface
*
* When a configure event is received, if a client commits the
* surface in response to the configure event, then the client
* must make an ack_configure request sometime before the commit
* request, passing along the serial of the configure event.
*
* For instance, for toplevel surfaces the compositor might use this
* information to move a surface to the top left only when the client has
* drawn itself for the maximized or fullscreen state.
*
* If the client receives multiple configure events before it
* can respond to one, it only has to ack the last configure event.
*
* A client is not required to commit immediately after sending
* an ack_configure request - it may even ack_configure several times
* before its next surface commit.
*
* A client may send multiple ack_configure requests before committing, but
* only the last request sent before a commit indicates which configure
* event the client really is responding to.
*/
static inline void
xdg_surface_ack_configure(struct xdg_surface *xdg_surface, uint32_t serial)
{
wl_proxy_marshal((struct wl_proxy *) xdg_surface,
XDG_SURFACE_ACK_CONFIGURE, serial);
}
#ifndef XDG_TOPLEVEL_ERROR_ENUM
#define XDG_TOPLEVEL_ERROR_ENUM
enum xdg_toplevel_error {
/**
* provided value is not a valid variant of the resize_edge enum
*/
XDG_TOPLEVEL_ERROR_INVALID_RESIZE_EDGE = 0,
/**
* invalid parent toplevel
*/
XDG_TOPLEVEL_ERROR_INVALID_PARENT = 1,
};
#endif /* XDG_TOPLEVEL_ERROR_ENUM */
#ifndef XDG_TOPLEVEL_RESIZE_EDGE_ENUM
#define XDG_TOPLEVEL_RESIZE_EDGE_ENUM
/**
* @ingroup iface_xdg_toplevel
* edge values for resizing
*
* These values are used to indicate which edge of a surface
* is being dragged in a resize operation.
*/
enum xdg_toplevel_resize_edge {
XDG_TOPLEVEL_RESIZE_EDGE_NONE = 0,
XDG_TOPLEVEL_RESIZE_EDGE_TOP = 1,
XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM = 2,
XDG_TOPLEVEL_RESIZE_EDGE_LEFT = 4,
XDG_TOPLEVEL_RESIZE_EDGE_TOP_LEFT = 5,
XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM_LEFT = 6,
XDG_TOPLEVEL_RESIZE_EDGE_RIGHT = 8,
XDG_TOPLEVEL_RESIZE_EDGE_TOP_RIGHT = 9,
XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM_RIGHT = 10,
};
#endif /* XDG_TOPLEVEL_RESIZE_EDGE_ENUM */
#ifndef XDG_TOPLEVEL_STATE_ENUM
#define XDG_TOPLEVEL_STATE_ENUM
/**
* @ingroup iface_xdg_toplevel
* the surfaces bottom edge is tiled
*
* The window is currently in a tiled layout and the bottom edge is
* considered to be adjacent to another part of the tiling grid.
*/
enum xdg_toplevel_state {
/**
* the surface is maximized
*/
XDG_TOPLEVEL_STATE_MAXIMIZED = 1,
/**
* the surface is fullscreen
*/
XDG_TOPLEVEL_STATE_FULLSCREEN = 2,
/**
* the surface is being resized
*/
XDG_TOPLEVEL_STATE_RESIZING = 3,
/**
* the surface is now activated
*/
XDG_TOPLEVEL_STATE_ACTIVATED = 4,
/**
* @since 2
*/
XDG_TOPLEVEL_STATE_TILED_LEFT = 5,
/**
* @since 2
*/
XDG_TOPLEVEL_STATE_TILED_RIGHT = 6,
/**
* @since 2
*/
XDG_TOPLEVEL_STATE_TILED_TOP = 7,
/**
* @since 2
*/
XDG_TOPLEVEL_STATE_TILED_BOTTOM = 8,
};
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_STATE_TILED_LEFT_SINCE_VERSION 2
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_STATE_TILED_RIGHT_SINCE_VERSION 2
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_STATE_TILED_TOP_SINCE_VERSION 2
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_STATE_TILED_BOTTOM_SINCE_VERSION 2
#endif /* XDG_TOPLEVEL_STATE_ENUM */
#ifndef XDG_TOPLEVEL_WM_CAPABILITIES_ENUM
#define XDG_TOPLEVEL_WM_CAPABILITIES_ENUM
enum xdg_toplevel_wm_capabilities {
/**
* show_window_menu is available
*/
XDG_TOPLEVEL_WM_CAPABILITIES_WINDOW_MENU = 1,
/**
* set_maximized and unset_maximized are available
*/
XDG_TOPLEVEL_WM_CAPABILITIES_MAXIMIZE = 2,
/**
* set_fullscreen and unset_fullscreen are available
*/
XDG_TOPLEVEL_WM_CAPABILITIES_FULLSCREEN = 3,
/**
* set_minimized is available
*/
XDG_TOPLEVEL_WM_CAPABILITIES_MINIMIZE = 4,
};
#endif /* XDG_TOPLEVEL_WM_CAPABILITIES_ENUM */
/**
* @ingroup iface_xdg_toplevel
* @struct xdg_toplevel_listener
*/
struct xdg_toplevel_listener {
/**
* suggest a surface change
*
* This configure event asks the client to resize its toplevel
* surface or to change its state. The configured state should not
* be applied immediately. See xdg_surface.configure for details.
*
* The width and height arguments specify a hint to the window
* about how its surface should be resized in window geometry
* coordinates. See set_window_geometry.
*
* If the width or height arguments are zero, it means the client
* should decide its own window dimension. This may happen when the
* compositor needs to configure the state of the surface but
* doesn't have any information about any previous or expected
* dimension.
*
* The states listed in the event specify how the width/height
* arguments should be interpreted, and possibly how it should be
* drawn.
*
* Clients must send an ack_configure in response to this event.
* See xdg_surface.configure and xdg_surface.ack_configure for
* details.
*/
void (*configure)(void *data,
struct xdg_toplevel *xdg_toplevel,
int32_t width,
int32_t height,
struct wl_array *states);
/**
* surface wants to be closed
*
* The close event is sent by the compositor when the user wants
* the surface to be closed. This should be equivalent to the user
* clicking the close button in client-side decorations, if your
* application has any.
*
* This is only a request that the user intends to close the
* window. The client may choose to ignore this request, or show a
* dialog to ask the user to save their data, etc.
*/
void (*close)(void *data,
struct xdg_toplevel *xdg_toplevel);
/**
* recommended window geometry bounds
*
* The configure_bounds event may be sent prior to a
* xdg_toplevel.configure event to communicate the bounds a window
* geometry size is recommended to constrain to.
*
* The passed width and height are in surface coordinate space. If
* width and height are 0, it means bounds is unknown and
* equivalent to as if no configure_bounds event was ever sent for
* this surface.
*
* The bounds can for example correspond to the size of a monitor
* excluding any panels or other shell components, so that a
* surface isn't created in a way that it cannot fit.
*
* The bounds may change at any point, and in such a case, a new
* xdg_toplevel.configure_bounds will be sent, followed by
* xdg_toplevel.configure and xdg_surface.configure.
* @since 4
*/
void (*configure_bounds)(void *data,
struct xdg_toplevel *xdg_toplevel,
int32_t width,
int32_t height);
/**
* compositor capabilities
*
* This event advertises the capabilities supported by the
* compositor. If a capability isn't supported, clients should hide
* or disable the UI elements that expose this functionality. For
* instance, if the compositor doesn't advertise support for
* minimized toplevels, a button triggering the set_minimized
* request should not be displayed.
*
* The compositor will ignore requests it doesn't support. For
* instance, a compositor which doesn't advertise support for
* minimized will ignore set_minimized requests.
*
* Compositors must send this event once before the first
* xdg_surface.configure event. When the capabilities change,
* compositors must send this event again and then send an
* xdg_surface.configure event.
*
* The configured state should not be applied immediately. See
* xdg_surface.configure for details.
*
* The capabilities are sent as an array of 32-bit unsigned
* integers in native endianness.
* @param capabilities array of 32-bit capabilities
* @since 5
*/
void (*wm_capabilities)(void *data,
struct xdg_toplevel *xdg_toplevel,
struct wl_array *capabilities);
};
/**
* @ingroup iface_xdg_toplevel
*/
static inline int
xdg_toplevel_add_listener(struct xdg_toplevel *xdg_toplevel,
const struct xdg_toplevel_listener *listener, void *data)
{
return wl_proxy_add_listener((struct wl_proxy *) xdg_toplevel,
(void (**)(void)) listener, data);
}
#define XDG_TOPLEVEL_DESTROY 0
#define XDG_TOPLEVEL_SET_PARENT 1
#define XDG_TOPLEVEL_SET_TITLE 2
#define XDG_TOPLEVEL_SET_APP_ID 3
#define XDG_TOPLEVEL_SHOW_WINDOW_MENU 4
#define XDG_TOPLEVEL_MOVE 5
#define XDG_TOPLEVEL_RESIZE 6
#define XDG_TOPLEVEL_SET_MAX_SIZE 7
#define XDG_TOPLEVEL_SET_MIN_SIZE 8
#define XDG_TOPLEVEL_SET_MAXIMIZED 9
#define XDG_TOPLEVEL_UNSET_MAXIMIZED 10
#define XDG_TOPLEVEL_SET_FULLSCREEN 11
#define XDG_TOPLEVEL_UNSET_FULLSCREEN 12
#define XDG_TOPLEVEL_SET_MINIMIZED 13
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_CONFIGURE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_CLOSE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_CONFIGURE_BOUNDS_SINCE_VERSION 4
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_WM_CAPABILITIES_SINCE_VERSION 5
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_DESTROY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_PARENT_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_TITLE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_APP_ID_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SHOW_WINDOW_MENU_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_MOVE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_RESIZE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_MAX_SIZE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_MIN_SIZE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_MAXIMIZED_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_UNSET_MAXIMIZED_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_FULLSCREEN_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_UNSET_FULLSCREEN_SINCE_VERSION 1
/**
* @ingroup iface_xdg_toplevel
*/
#define XDG_TOPLEVEL_SET_MINIMIZED_SINCE_VERSION 1
/** @ingroup iface_xdg_toplevel */
static inline void
xdg_toplevel_set_user_data(struct xdg_toplevel *xdg_toplevel, void *user_data)
{
wl_proxy_set_user_data((struct wl_proxy *) xdg_toplevel, user_data);
}
/** @ingroup iface_xdg_toplevel */
static inline void *
xdg_toplevel_get_user_data(struct xdg_toplevel *xdg_toplevel)
{
return wl_proxy_get_user_data((struct wl_proxy *) xdg_toplevel);
}
static inline uint32_t
xdg_toplevel_get_version(struct xdg_toplevel *xdg_toplevel)
{
return wl_proxy_get_version((struct wl_proxy *) xdg_toplevel);
}
/**
* @ingroup iface_xdg_toplevel
*
* This request destroys the role surface and unmaps the surface;
* see "Unmapping" behavior in interface section for details.
*/
static inline void
xdg_toplevel_destroy(struct xdg_toplevel *xdg_toplevel)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_DESTROY);
wl_proxy_destroy((struct wl_proxy *) xdg_toplevel);
}
/**
* @ingroup iface_xdg_toplevel
*
* Set the "parent" of this surface. This surface should be stacked
* above the parent surface and all other ancestor surfaces.
*
* Parent surfaces should be set on dialogs, toolboxes, or other
* "auxiliary" surfaces, so that the parent is raised when the dialog
* is raised.
*
* Setting a null parent for a child surface unsets its parent. Setting
* a null parent for a surface which currently has no parent is a no-op.
*
* Only mapped surfaces can have child surfaces. Setting a parent which
* is not mapped is equivalent to setting a null parent. If a surface
* becomes unmapped, its children's parent is set to the parent of
* the now-unmapped surface. If the now-unmapped surface has no parent,
* its children's parent is unset. If the now-unmapped surface becomes
* mapped again, its parent-child relationship is not restored.
*
* The parent toplevel must not be one of the child toplevel's
* descendants, and the parent must be different from the child toplevel,
* otherwise the invalid_parent protocol error is raised.
*/
static inline void
xdg_toplevel_set_parent(struct xdg_toplevel *xdg_toplevel, struct xdg_toplevel *parent)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_PARENT, parent);
}
/**
* @ingroup iface_xdg_toplevel
*
* Set a short title for the surface.
*
* This string may be used to identify the surface in a task bar,
* window list, or other user interface elements provided by the
* compositor.
*
* The string must be encoded in UTF-8.
*/
static inline void
xdg_toplevel_set_title(struct xdg_toplevel *xdg_toplevel, const char *title)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_TITLE, title);
}
/**
* @ingroup iface_xdg_toplevel
*
* Set an application identifier for the surface.
*
* The app ID identifies the general class of applications to which
* the surface belongs. The compositor can use this to group multiple
* surfaces together, or to determine how to launch a new application.
*
* For D-Bus activatable applications, the app ID is used as the D-Bus
* service name.
*
* The compositor shell will try to group application surfaces together
* by their app ID. As a best practice, it is suggested to select app
* ID's that match the basename of the application's .desktop file.
* For example, "org.freedesktop.FooViewer" where the .desktop file is
* "org.freedesktop.FooViewer.desktop".
*
* Like other properties, a set_app_id request can be sent after the
* xdg_toplevel has been mapped to update the property.
*
* See the desktop-entry specification [0] for more details on
* application identifiers and how they relate to well-known D-Bus
* names and .desktop files.
*
* [0] http://standards.freedesktop.org/desktop-entry-spec/
*/
static inline void
xdg_toplevel_set_app_id(struct xdg_toplevel *xdg_toplevel, const char *app_id)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_APP_ID, app_id);
}
/**
* @ingroup iface_xdg_toplevel
*
* Clients implementing client-side decorations might want to show
* a context menu when right-clicking on the decorations, giving the
* user a menu that they can use to maximize or minimize the window.
*
* This request asks the compositor to pop up such a window menu at
* the given position, relative to the local surface coordinates of
* the parent surface. There are no guarantees as to what menu items
* the window menu contains.
*
* This request must be used in response to some sort of user action
* like a button press, key press, or touch down event.
*/
static inline void
xdg_toplevel_show_window_menu(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial, int32_t x, int32_t y)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SHOW_WINDOW_MENU, seat, serial, x, y);
}
/**
* @ingroup iface_xdg_toplevel
*
* Start an interactive, user-driven move of the surface.
*
* This request must be used in response to some sort of user action
* like a button press, key press, or touch down event. The passed
* serial is used to determine the type of interactive move (touch,
* pointer, etc).
*
* The server may ignore move requests depending on the state of
* the surface (e.g. fullscreen or maximized), or if the passed serial
* is no longer valid.
*
* If triggered, the surface will lose the focus of the device
* (wl_pointer, wl_touch, etc) used for the move. It is up to the
* compositor to visually indicate that the move is taking place, such as
* updating a pointer cursor, during the move. There is no guarantee
* that the device focus will return when the move is completed.
*/
static inline void
xdg_toplevel_move(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_MOVE, seat, serial);
}
/**
* @ingroup iface_xdg_toplevel
*
* Start a user-driven, interactive resize of the surface.
*
* This request must be used in response to some sort of user action
* like a button press, key press, or touch down event. The passed
* serial is used to determine the type of interactive resize (touch,
* pointer, etc).
*
* The server may ignore resize requests depending on the state of
* the surface (e.g. fullscreen or maximized).
*
* If triggered, the client will receive configure events with the
* "resize" state enum value and the expected sizes. See the "resize"
* enum value for more details about what is required. The client
* must also acknowledge configure events using "ack_configure". After
* the resize is completed, the client will receive another "configure"
* event without the resize state.
*
* If triggered, the surface also will lose the focus of the device
* (wl_pointer, wl_touch, etc) used for the resize. It is up to the
* compositor to visually indicate that the resize is taking place,
* such as updating a pointer cursor, during the resize. There is no
* guarantee that the device focus will return when the resize is
* completed.
*
* The edges parameter specifies how the surface should be resized, and
* is one of the values of the resize_edge enum. Values not matching
* a variant of the enum will cause a protocol error. The compositor
* may use this information to update the surface position for example
* when dragging the top left corner. The compositor may also use
* this information to adapt its behavior, e.g. choose an appropriate
* cursor image.
*/
static inline void
xdg_toplevel_resize(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial, uint32_t edges)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_RESIZE, seat, serial, edges);
}
/**
* @ingroup iface_xdg_toplevel
*
* Set a maximum size for the window.
*
* The client can specify a maximum size so that the compositor does
* not try to configure the window beyond this size.
*
* The width and height arguments are in window geometry coordinates.
* See xdg_surface.set_window_geometry.
*
* Values set in this way are double-buffered. They will get applied
* on the next commit.
*
* The compositor can use this information to allow or disallow
* different states like maximize or fullscreen and draw accurate
* animations.
*
* Similarly, a tiling window manager may use this information to
* place and resize client windows in a more effective way.
*
* The client should not rely on the compositor to obey the maximum
* size. The compositor may decide to ignore the values set by the
* client and request a larger size.
*
* If never set, or a value of zero in the request, means that the
* client has no expected maximum size in the given dimension.
* As a result, a client wishing to reset the maximum size
* to an unspecified state can use zero for width and height in the
* request.
*
* Requesting a maximum size to be smaller than the minimum size of
* a surface is illegal and will result in a protocol error.
*
* The width and height must be greater than or equal to zero. Using
* strictly negative values for width and height will result in a
* protocol error.
*/
static inline void
xdg_toplevel_set_max_size(struct xdg_toplevel *xdg_toplevel, int32_t width, int32_t height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_MAX_SIZE, width, height);
}
/**
* @ingroup iface_xdg_toplevel
*
* Set a minimum size for the window.
*
* The client can specify a minimum size so that the compositor does
* not try to configure the window below this size.
*
* The width and height arguments are in window geometry coordinates.
* See xdg_surface.set_window_geometry.
*
* Values set in this way are double-buffered. They will get applied
* on the next commit.
*
* The compositor can use this information to allow or disallow
* different states like maximize or fullscreen and draw accurate
* animations.
*
* Similarly, a tiling window manager may use this information to
* place and resize client windows in a more effective way.
*
* The client should not rely on the compositor to obey the minimum
* size. The compositor may decide to ignore the values set by the
* client and request a smaller size.
*
* If never set, or a value of zero in the request, means that the
* client has no expected minimum size in the given dimension.
* As a result, a client wishing to reset the minimum size
* to an unspecified state can use zero for width and height in the
* request.
*
* Requesting a minimum size to be larger than the maximum size of
* a surface is illegal and will result in a protocol error.
*
* The width and height must be greater than or equal to zero. Using
* strictly negative values for width and height will result in a
* protocol error.
*/
static inline void
xdg_toplevel_set_min_size(struct xdg_toplevel *xdg_toplevel, int32_t width, int32_t height)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_MIN_SIZE, width, height);
}
/**
* @ingroup iface_xdg_toplevel
*
* Maximize the surface.
*
* After requesting that the surface should be maximized, the compositor
* will respond by emitting a configure event. Whether this configure
* actually sets the window maximized is subject to compositor policies.
* The client must then update its content, drawing in the configured
* state. The client must also acknowledge the configure when committing
* the new content (see ack_configure).
*
* It is up to the compositor to decide how and where to maximize the
* surface, for example which output and what region of the screen should
* be used.
*
* If the surface was already maximized, the compositor will still emit
* a configure event with the "maximized" state.
*
* If the surface is in a fullscreen state, this request has no direct
* effect. It may alter the state the surface is returned to when
* unmaximized unless overridden by the compositor.
*/
static inline void
xdg_toplevel_set_maximized(struct xdg_toplevel *xdg_toplevel)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_MAXIMIZED);
}
/**
* @ingroup iface_xdg_toplevel
*
* Unmaximize the surface.
*
* After requesting that the surface should be unmaximized, the compositor
* will respond by emitting a configure event. Whether this actually
* un-maximizes the window is subject to compositor policies.
* If available and applicable, the compositor will include the window
* geometry dimensions the window had prior to being maximized in the
* configure event. The client must then update its content, drawing it in
* the configured state. The client must also acknowledge the configure
* when committing the new content (see ack_configure).
*
* It is up to the compositor to position the surface after it was
* unmaximized; usually the position the surface had before maximizing, if
* applicable.
*
* If the surface was already not maximized, the compositor will still
* emit a configure event without the "maximized" state.
*
* If the surface is in a fullscreen state, this request has no direct
* effect. It may alter the state the surface is returned to when
* unmaximized unless overridden by the compositor.
*/
static inline void
xdg_toplevel_unset_maximized(struct xdg_toplevel *xdg_toplevel)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_UNSET_MAXIMIZED);
}
/**
* @ingroup iface_xdg_toplevel
*
* Make the surface fullscreen.
*
* After requesting that the surface should be fullscreened, the
* compositor will respond by emitting a configure event. Whether the
* client is actually put into a fullscreen state is subject to compositor
* policies. The client must also acknowledge the configure when
* committing the new content (see ack_configure).
*
* The output passed by the request indicates the client's preference as
* to which display it should be set fullscreen on. If this value is NULL,
* it's up to the compositor to choose which display will be used to map
* this surface.
*
* If the surface doesn't cover the whole output, the compositor will
* position the surface in the center of the output and compensate with
* with border fill covering the rest of the output. The content of the
* border fill is undefined, but should be assumed to be in some way that
* attempts to blend into the surrounding area (e.g. solid black).
*
* If the fullscreened surface is not opaque, the compositor must make
* sure that other screen content not part of the same surface tree (made
* up of subsurfaces, popups or similarly coupled surfaces) are not
* visible below the fullscreened surface.
*/
static inline void
xdg_toplevel_set_fullscreen(struct xdg_toplevel *xdg_toplevel, struct wl_output *output)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_FULLSCREEN, output);
}
/**
* @ingroup iface_xdg_toplevel
*
* Make the surface no longer fullscreen.
*
* After requesting that the surface should be unfullscreened, the
* compositor will respond by emitting a configure event.
* Whether this actually removes the fullscreen state of the client is
* subject to compositor policies.
*
* Making a surface unfullscreen sets states for the surface based on the following:
* * the state(s) it may have had before becoming fullscreen
* * any state(s) decided by the compositor
* * any state(s) requested by the client while the surface was fullscreen
*
* The compositor may include the previous window geometry dimensions in
* the configure event, if applicable.
*
* The client must also acknowledge the configure when committing the new
* content (see ack_configure).
*/
static inline void
xdg_toplevel_unset_fullscreen(struct xdg_toplevel *xdg_toplevel)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_UNSET_FULLSCREEN);
}
/**
* @ingroup iface_xdg_toplevel
*
* Request that the compositor minimize your surface. There is no
* way to know if the surface is currently minimized, nor is there
* any way to unset minimization on this surface.
*
* If you are looking to throttle redrawing when minimized, please
* instead use the wl_surface.frame event for this, as this will
* also work with live previews on windows in Alt-Tab, Expose or
* similar compositor features.
*/
static inline void
xdg_toplevel_set_minimized(struct xdg_toplevel *xdg_toplevel)
{
wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
XDG_TOPLEVEL_SET_MINIMIZED);
}
#ifndef XDG_POPUP_ERROR_ENUM
#define XDG_POPUP_ERROR_ENUM
enum xdg_popup_error {
/**
* tried to grab after being mapped
*/
XDG_POPUP_ERROR_INVALID_GRAB = 0,
};
#endif /* XDG_POPUP_ERROR_ENUM */
/**
* @ingroup iface_xdg_popup
* @struct xdg_popup_listener
*/
struct xdg_popup_listener {
/**
* configure the popup surface
*
* This event asks the popup surface to configure itself given
* the configuration. The configured state should not be applied
* immediately. See xdg_surface.configure for details.
*
* The x and y arguments represent the position the popup was
* placed at given the xdg_positioner rule, relative to the upper
* left corner of the window geometry of the parent surface.
*
* For version 2 or older, the configure event for an xdg_popup is
* only ever sent once for the initial configuration. Starting with
* version 3, it may be sent again if the popup is setup with an
* xdg_positioner with set_reactive requested, or in response to
* xdg_popup.reposition requests.
* @param x x position relative to parent surface window geometry
* @param y y position relative to parent surface window geometry
* @param width window geometry width
* @param height window geometry height
*/
void (*configure)(void *data,
struct xdg_popup *xdg_popup,
int32_t x,
int32_t y,
int32_t width,
int32_t height);
/**
* popup interaction is done
*
* The popup_done event is sent out when a popup is dismissed by
* the compositor. The client should destroy the xdg_popup object
* at this point.
*/
void (*popup_done)(void *data,
struct xdg_popup *xdg_popup);
/**
* signal the completion of a repositioned request
*
* The repositioned event is sent as part of a popup
* configuration sequence, together with xdg_popup.configure and
* lastly xdg_surface.configure to notify the completion of a
* reposition request.
*
* The repositioned event is to notify about the completion of a
* xdg_popup.reposition request. The token argument is the token
* passed in the xdg_popup.reposition request.
*
* Immediately after this event is emitted, xdg_popup.configure and
* xdg_surface.configure will be sent with the updated size and
* position, as well as a new configure serial.
*
* The client should optionally update the content of the popup,
* but must acknowledge the new popup configuration for the new
* position to take effect. See xdg_surface.ack_configure for
* details.
* @param token reposition request token
* @since 3
*/
void (*repositioned)(void *data,
struct xdg_popup *xdg_popup,
uint32_t token);
};
/**
* @ingroup iface_xdg_popup
*/
static inline int
xdg_popup_add_listener(struct xdg_popup *xdg_popup,
const struct xdg_popup_listener *listener, void *data)
{
return wl_proxy_add_listener((struct wl_proxy *) xdg_popup,
(void (**)(void)) listener, data);
}
#define XDG_POPUP_DESTROY 0
#define XDG_POPUP_GRAB 1
#define XDG_POPUP_REPOSITION 2
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_CONFIGURE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_POPUP_DONE_SINCE_VERSION 1
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_REPOSITIONED_SINCE_VERSION 3
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_DESTROY_SINCE_VERSION 1
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_GRAB_SINCE_VERSION 1
/**
* @ingroup iface_xdg_popup
*/
#define XDG_POPUP_REPOSITION_SINCE_VERSION 3
/** @ingroup iface_xdg_popup */
static inline void
xdg_popup_set_user_data(struct xdg_popup *xdg_popup, void *user_data)
{
wl_proxy_set_user_data((struct wl_proxy *) xdg_popup, user_data);
}
/** @ingroup iface_xdg_popup */
static inline void *
xdg_popup_get_user_data(struct xdg_popup *xdg_popup)
{
return wl_proxy_get_user_data((struct wl_proxy *) xdg_popup);
}
static inline uint32_t
xdg_popup_get_version(struct xdg_popup *xdg_popup)
{
return wl_proxy_get_version((struct wl_proxy *) xdg_popup);
}
/**
* @ingroup iface_xdg_popup
*
* This destroys the popup. Explicitly destroying the xdg_popup
* object will also dismiss the popup, and unmap the surface.
*
* If this xdg_popup is not the "topmost" popup, a protocol error
* will be sent.
*/
static inline void
xdg_popup_destroy(struct xdg_popup *xdg_popup)
{
wl_proxy_marshal((struct wl_proxy *) xdg_popup,
XDG_POPUP_DESTROY);
wl_proxy_destroy((struct wl_proxy *) xdg_popup);
}
/**
* @ingroup iface_xdg_popup
*
* This request makes the created popup take an explicit grab. An explicit
* grab will be dismissed when the user dismisses the popup, or when the
* client destroys the xdg_popup. This can be done by the user clicking
* outside the surface, using the keyboard, or even locking the screen
* through closing the lid or a timeout.
*
* If the compositor denies the grab, the popup will be immediately
* dismissed.
*
* This request must be used in response to some sort of user action like a
* button press, key press, or touch down event. The serial number of the
* event should be passed as 'serial'.
*
* The parent of a grabbing popup must either be an xdg_toplevel surface or
* another xdg_popup with an explicit grab. If the parent is another
* xdg_popup it means that the popups are nested, with this popup now being
* the topmost popup.
*
* Nested popups must be destroyed in the reverse order they were created
* in, e.g. the only popup you are allowed to destroy at all times is the
* topmost one.
*
* When compositors choose to dismiss a popup, they may dismiss every
* nested grabbing popup as well. When a compositor dismisses popups, it
* will follow the same dismissing order as required from the client.
*
* If the topmost grabbing popup is destroyed, the grab will be returned to
* the parent of the popup, if that parent previously had an explicit grab.
*
* If the parent is a grabbing popup which has already been dismissed, this
* popup will be immediately dismissed. If the parent is a popup that did
* not take an explicit grab, an error will be raised.
*
* During a popup grab, the client owning the grab will receive pointer
* and touch events for all their surfaces as normal (similar to an
* "owner-events" grab in X11 parlance), while the top most grabbing popup
* will always have keyboard focus.
*/
static inline void
xdg_popup_grab(struct xdg_popup *xdg_popup, struct wl_seat *seat, uint32_t serial)
{
wl_proxy_marshal((struct wl_proxy *) xdg_popup,
XDG_POPUP_GRAB, seat, serial);
}
/**
* @ingroup iface_xdg_popup
*
* Reposition an already-mapped popup. The popup will be placed given the
* details in the passed xdg_positioner object, and a
* xdg_popup.repositioned followed by xdg_popup.configure and
* xdg_surface.configure will be emitted in response. Any parameters set
* by the previous positioner will be discarded.
*
* The passed token will be sent in the corresponding
* xdg_popup.repositioned event. The new popup position will not take
* effect until the corresponding configure event is acknowledged by the
* client. See xdg_popup.repositioned for details. The token itself is
* opaque, and has no other special meaning.
*
* If multiple reposition requests are sent, the compositor may skip all
* but the last one.
*
* If the popup is repositioned in response to a configure event for its
* parent, the client should send an xdg_positioner.set_parent_configure
* and possibly an xdg_positioner.set_parent_size request to allow the
* compositor to properly constrain the popup.
*
* If the popup is repositioned together with a parent that is being
* resized, but not in response to a configure event, the client should
* send an xdg_positioner.set_parent_size request.
*/
static inline void
xdg_popup_reposition(struct xdg_popup *xdg_popup, struct xdg_positioner *positioner, uint32_t token)
{
wl_proxy_marshal((struct wl_proxy *) xdg_popup,
XDG_POPUP_REPOSITION, positioner, token);
}
#ifdef __cplusplus
}
#endif
#endif