ebiten/audio/mp3/maindata.go

255 lines
7.4 KiB
Go

// Copyright 2017 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !js
package mp3
import (
"fmt"
"io"
)
var mpeg1_scalefac_sizes = [16][2]int{
{0, 0}, {0, 1}, {0, 2}, {0, 3}, {3, 0}, {1, 1}, {1, 2}, {1, 3},
{2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}, {4, 2}, {4, 3},
}
func (f *frame) readMainL3() error {
nch := f.numberOfChannels()
// Calculate header audio data size
framesize := (144*
g_mpeg1_bitrates[f.header.layer][f.header.bitrate_index])/
g_sampling_frequency[f.header.sampling_frequency] +
f.header.padding_bit
if framesize > 2000 {
return fmt.Errorf("mp3: framesize = %d", framesize)
}
// Sideinfo is 17 bytes for one channel and 32 bytes for two
sideinfo_size := 32
if nch == 1 {
sideinfo_size = 17
}
// Main data size is the rest of the frame,including ancillary data
main_data_size := framesize - sideinfo_size - 4 // sync+header
// CRC is 2 bytes
if f.header.protection_bit == 0 {
main_data_size -= 2
}
// Assemble main data buffer with data from this frame and the previous
// two frames. main_data_begin indicates how many bytes from previous
// frames that should be used. This buffer is later accessed by the
// getMainBits function in the same way as the side info is.
m, err := getMainData(f.prev, main_data_size, f.sideInfo.main_data_begin)
if err != nil {
// This could be due to not enough data in reservoir
return err
}
f.mainDataBytes = m
for gr := 0; gr < 2; gr++ {
for ch := 0; ch < nch; ch++ {
part_2_start := m.getMainPos()
// Number of bits in the bitstream for the bands
slen1 := mpeg1_scalefac_sizes[f.sideInfo.scalefac_compress[gr][ch]][0]
slen2 := mpeg1_scalefac_sizes[f.sideInfo.scalefac_compress[gr][ch]][1]
if (f.sideInfo.win_switch_flag[gr][ch] != 0) && (f.sideInfo.block_type[gr][ch] == 2) {
if f.sideInfo.mixed_block_flag[gr][ch] != 0 {
for sfb := 0; sfb < 8; sfb++ {
f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1)
}
for sfb := 3; sfb < 12; sfb++ {
//slen1 for band 3-5,slen2 for 6-11
nbits := slen2
if sfb < 6 {
nbits = slen1
}
for win := 0; win < 3; win++ {
f.mainData.scalefac_s[gr][ch][sfb][win] = m.getMainBits(nbits)
}
}
} else {
for sfb := 0; sfb < 12; sfb++ {
//slen1 for band 3-5,slen2 for 6-11
nbits := slen2
if sfb < 6 {
nbits = slen1
}
for win := 0; win < 3; win++ {
f.mainData.scalefac_s[gr][ch][sfb][win] = m.getMainBits(nbits)
}
}
}
} else { // block_type == 0 if winswitch == 0
// Scale factor bands 0-5
if (f.sideInfo.scfsi[ch][0] == 0) || (gr == 0) {
for sfb := 0; sfb < 6; sfb++ {
f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1)
}
} else if (f.sideInfo.scfsi[ch][0] == 1) && (gr == 1) {
// Copy scalefactors from granule 0 to granule 1
for sfb := 0; sfb < 6; sfb++ {
f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb]
}
}
// Scale factor bands 6-10
if (f.sideInfo.scfsi[ch][1] == 0) || (gr == 0) {
for sfb := 6; sfb < 11; sfb++ {
f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1)
}
} else if (f.sideInfo.scfsi[ch][1] == 1) && (gr == 1) {
// Copy scalefactors from granule 0 to granule 1
for sfb := 6; sfb < 11; sfb++ {
f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb]
}
}
// Scale factor bands 11-15
if (f.sideInfo.scfsi[ch][2] == 0) || (gr == 0) {
for sfb := 11; sfb < 16; sfb++ {
f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen2)
}
} else if (f.sideInfo.scfsi[ch][2] == 1) && (gr == 1) {
// Copy scalefactors from granule 0 to granule 1
for sfb := 11; sfb < 16; sfb++ {
f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb]
}
}
// Scale factor bands 16-20
if (f.sideInfo.scfsi[ch][3] == 0) || (gr == 0) {
for sfb := 16; sfb < 21; sfb++ {
f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen2)
}
} else if (f.sideInfo.scfsi[ch][3] == 1) && (gr == 1) {
// Copy scalefactors from granule 0 to granule 1
for sfb := 16; sfb < 21; sfb++ {
f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb]
}
}
}
// Read Huffman coded data. Skip stuffing bits.
if err := f.readHuffman(part_2_start, gr, ch); err != nil {
return err
}
}
}
// The ancillary data is stored here,but we ignore it.
return nil
}
type mainDataBytes struct {
// Large static data
vec []int
// Index into the current byte(0-7)
idx int
pos int
}
func getMainData(prevFrame *frame, size int, offset int) (*mainDataBytes, error) {
if size > 1500 {
return nil, fmt.Errorf("mp3: size = %d", size)
}
// Check that there's data available from previous frames if needed
if prevFrame != nil && offset > len(prevFrame.mainDataBytes.vec) {
// No,there is not, so we skip decoding this frame, but we have to
// read the main_data bits from the bitstream in case they are needed
// for decoding the next frame.
buf := make([]int, size)
n := 0
var err error
for n < size && err == nil {
nn, err2 := getBytes(buf)
n += nn
err = err2
}
if n < size {
if err == io.EOF {
return nil, fmt.Errorf("mp3: unexpected EOF at getMainData")
}
return nil, err
}
m := &mainDataBytes{}
if prevFrame != nil {
m.vec = append(prevFrame.mainDataBytes.vec, buf...)
}
// TODO: Define a special error and enable to continue the next frame.
return m, fmt.Errorf("mp3: frame can't be decoded")
}
// Copy data from previous frames
vec := []int{}
if prevFrame != nil {
v := prevFrame.mainDataBytes.vec
vec = v[len(v)-offset:]
}
// Read the main_data from file
buf := make([]int, size)
n := 0
var err error
for n < size && err == nil {
nn, err2 := getBytes(buf)
n += nn
err = err2
}
if n < size {
if err == io.EOF {
return nil, fmt.Errorf("mp3: unexpected EOF at getMainData")
}
return nil, err
}
m := &mainDataBytes{
vec: append(vec, buf...),
}
return m, nil
}
func (m *mainDataBytes) getMainBit() int {
tmp := uint(m.vec[m.pos]) >> (7 - uint(m.idx))
tmp &= 0x01
m.pos += (m.idx + 1) >> 3
m.idx = (m.idx + 1) & 0x07
return int(tmp)
}
func (m *mainDataBytes) getMainBits(num int) int {
if num == 0 {
return 0
}
// Form a word of the next four bytes
b := make([]int, 4)
copy(b, m.vec[m.pos:])
tmp := (uint32(b[0]) << 24) | (uint32(b[1]) << 16) | (uint32(b[2]) << 8) | (uint32(b[3]) << 0)
// Remove bits already used
tmp = tmp << uint(m.idx)
// Remove bits after the desired bits
tmp = tmp >> (32 - uint(num))
// Update pointers
m.pos += (m.idx + num) >> 3
m.idx = (m.idx + num) & 0x07
return int(tmp)
}
func (m *mainDataBytes) getMainPos() int {
pos := m.pos
pos *= 8 // Multiply by 8 to get number of bits
pos += m.idx
return pos
}
func (m *mainDataBytes) setMainPos(bit_pos int) {
m.pos = bit_pos >> 3
m.idx = bit_pos & 0x7
}