mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2025-01-26 10:42:42 +01:00
a9241a45c6
Updates #844
315 lines
8.5 KiB
Go
315 lines
8.5 KiB
Go
// Copyright 2019 The Ebiten Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Package vector provides functions for vector graphics rendering.
|
|
//
|
|
// This package is under experiments and the API might be changed with breaking backward compatibility.
|
|
package vector
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/hajimehoshi/ebiten/v2"
|
|
)
|
|
|
|
// Direction represents clockwise or countercolockwise.
|
|
type Direction int
|
|
|
|
const (
|
|
Clockwise Direction = iota
|
|
CounterClockwise
|
|
)
|
|
|
|
type point struct {
|
|
x float32
|
|
y float32
|
|
}
|
|
|
|
// Path represents a collection of path segments.
|
|
type Path struct {
|
|
segs [][]point
|
|
cur point
|
|
}
|
|
|
|
// MoveTo skips the current position of the path to the given position (x, y) without adding any strokes.
|
|
func (p *Path) MoveTo(x, y float32) {
|
|
p.cur = point{x: x, y: y}
|
|
p.segs = append(p.segs, []point{p.cur})
|
|
}
|
|
|
|
// LineTo adds a line segument to the path, which starts from the current position and ends to the given position (x, y).
|
|
//
|
|
// LineTo updates the current position to (x, y).
|
|
func (p *Path) LineTo(x, y float32) {
|
|
if len(p.segs) == 0 {
|
|
p.segs = append(p.segs, []point{{x: x, y: y}})
|
|
p.cur = point{x: x, y: y}
|
|
return
|
|
}
|
|
seg := p.segs[len(p.segs)-1]
|
|
if seg[len(seg)-1].x != x || seg[len(seg)-1].y != y {
|
|
p.segs[len(p.segs)-1] = append(seg, point{x: x, y: y})
|
|
}
|
|
p.cur = point{x: x, y: y}
|
|
}
|
|
|
|
// QuadTo adds a quadratic Bézier curve to the path.
|
|
// (x1, y1) is the control point, and (x2, y2) is the destination.
|
|
//
|
|
// QuadTo updates the current position to (x2, y2).
|
|
func (p *Path) QuadTo(x1, y1, x2, y2 float32) {
|
|
p.quadTo(x1, y1, x2, y2, 0)
|
|
}
|
|
|
|
// isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow.
|
|
func isPointCloseToSegment(x, y, x0, y0, x1, y1 float32, allow float32) bool {
|
|
// Line passing through (x0, y0) and (x1, y1) in the form of ax + by + c = 0
|
|
a := y1 - y0
|
|
b := -(x1 - x0)
|
|
c := (x1-x0)*y0 - (y1-y0)*x0
|
|
|
|
// The distance between a line ax+by+c=0 and (x0, y0) is
|
|
// |ax0 + by0 + c| / √(a² + b²)
|
|
return allow*allow*(a*a+b*b) > (a*x+b*y+c)*(a*x+b*y+c)
|
|
}
|
|
|
|
func (p *Path) quadTo(x1, y1, x2, y2 float32, level int) {
|
|
if level > 10 {
|
|
return
|
|
}
|
|
|
|
x0 := p.cur.x
|
|
y0 := p.cur.y
|
|
if isPointCloseToSegment(x1, y1, x0, y0, x2, y2, 0.5) {
|
|
p.LineTo(x2, y2)
|
|
return
|
|
}
|
|
|
|
x01 := (x0 + x1) / 2
|
|
y01 := (y0 + y1) / 2
|
|
x12 := (x1 + x2) / 2
|
|
y12 := (y1 + y2) / 2
|
|
x012 := (x01 + x12) / 2
|
|
y012 := (y01 + y12) / 2
|
|
p.quadTo(x01, y01, x012, y012, level+1)
|
|
p.quadTo(x12, y12, x2, y2, level+1)
|
|
}
|
|
|
|
// CubicTo adds a cubic Bézier curve to the path.
|
|
// (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination.
|
|
//
|
|
// CubicTo updates the current position to (x3, y3).
|
|
func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) {
|
|
p.cubicTo(x1, y1, x2, y2, x3, y3, 0)
|
|
}
|
|
|
|
func (p *Path) cubicTo(x1, y1, x2, y2, x3, y3 float32, level int) {
|
|
if level > 10 {
|
|
return
|
|
}
|
|
|
|
x0 := p.cur.x
|
|
y0 := p.cur.y
|
|
if isPointCloseToSegment(x1, y1, x0, y0, x3, y3, 0.5) && isPointCloseToSegment(x2, y2, x0, y0, x3, y3, 0.5) {
|
|
p.LineTo(x3, y3)
|
|
return
|
|
}
|
|
|
|
x01 := (x0 + x1) / 2
|
|
y01 := (y0 + y1) / 2
|
|
x12 := (x1 + x2) / 2
|
|
y12 := (y1 + y2) / 2
|
|
x23 := (x2 + x3) / 2
|
|
y23 := (y2 + y3) / 2
|
|
x012 := (x01 + x12) / 2
|
|
y012 := (y01 + y12) / 2
|
|
x123 := (x12 + x23) / 2
|
|
y123 := (y12 + y23) / 2
|
|
x0123 := (x012 + x123) / 2
|
|
y0123 := (y012 + y123) / 2
|
|
p.cubicTo(x01, y01, x012, y012, x0123, y0123, level+1)
|
|
p.cubicTo(x123, y123, x23, y23, x3, y3, level+1)
|
|
}
|
|
|
|
func normalize(x, y float32) (float32, float32) {
|
|
len := float32(math.Hypot(float64(x), float64(y)))
|
|
return x / len, y / len
|
|
}
|
|
|
|
func cross(x0, y0, x1, y1 float32) float32 {
|
|
return x0*y1 - x1*y0
|
|
}
|
|
|
|
// ArcTo adds an arc curve to the path. (x1, y1) is the control point, and (x2, y2) is the destination.
|
|
//
|
|
// ArcTo updates the current position to (x2, y2).
|
|
func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
|
|
x0 := p.cur.x
|
|
y0 := p.cur.y
|
|
dx0 := x0 - x1
|
|
dy0 := y0 - y1
|
|
dx1 := x2 - x1
|
|
dy1 := y2 - y1
|
|
dx0, dy0 = normalize(dx0, dy0)
|
|
dx1, dy1 = normalize(dx1, dy1)
|
|
|
|
// theta is the angle between two vectors (dx0, dy0) and (dx1, dy1).
|
|
theta := math.Acos(float64(dx0*dx1 + dy0*dy1))
|
|
// TODO: When theta is bigger than π/2, the arc should be split into two.
|
|
|
|
// dist is the distance between the control point and the arc's begenning and ending points.
|
|
dist := radius / float32(math.Tan(theta/2))
|
|
|
|
// TODO: What if dist is too big?
|
|
|
|
// (ax0, ay0) is the start of the arc.
|
|
ax0 := x1 + dx0*dist
|
|
ay0 := y1 + dy0*dist
|
|
|
|
var cx, cy, a0, a1 float32
|
|
var dir Direction
|
|
if cross(dx0, dy0, dx1, dy1) >= 0 {
|
|
cx = ax0 - dy0*radius
|
|
cy = ay0 + dx0*radius
|
|
a0 = float32(math.Atan2(float64(-dx0), float64(dy0)))
|
|
a1 = float32(math.Atan2(float64(dx1), float64(-dy1)))
|
|
dir = CounterClockwise
|
|
} else {
|
|
cx = ax0 + dy0*radius
|
|
cy = ay0 - dx0*radius
|
|
a0 = float32(math.Atan2(float64(dx0), float64(-dy0)))
|
|
a1 = float32(math.Atan2(float64(-dx1), float64(dy1)))
|
|
dir = Clockwise
|
|
}
|
|
p.Arc(cx, cy, radius, a0, a1, dir)
|
|
|
|
p.LineTo(x2, y2)
|
|
}
|
|
|
|
// Arc adds an arc to the path.
|
|
// (x, y) is the center of the arc.
|
|
//
|
|
// Arc updates the current position to the end of the arc.
|
|
func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) {
|
|
// Adjust the angles.
|
|
var da float64
|
|
if dir == Clockwise {
|
|
for startAngle > endAngle {
|
|
endAngle += 2 * math.Pi
|
|
}
|
|
da = float64(endAngle - startAngle)
|
|
} else {
|
|
for startAngle < endAngle {
|
|
startAngle += 2 * math.Pi
|
|
}
|
|
da = float64(startAngle - endAngle)
|
|
}
|
|
|
|
if da >= 2*math.Pi {
|
|
da = 2 * math.Pi
|
|
if dir == Clockwise {
|
|
endAngle = startAngle + 2*math.Pi
|
|
} else {
|
|
startAngle = endAngle + 2*math.Pi
|
|
}
|
|
}
|
|
|
|
// If the angle is big, splict this into multiple Arc calls.
|
|
if da > math.Pi/2 {
|
|
const delta = math.Pi / 3
|
|
a := float64(startAngle)
|
|
if dir == Clockwise {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir)
|
|
if a+delta >= float64(endAngle) {
|
|
break
|
|
}
|
|
a += delta
|
|
}
|
|
} else {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir)
|
|
if a-delta <= float64(endAngle) {
|
|
break
|
|
}
|
|
a -= delta
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
sin0, cos0 := math.Sincos(float64(startAngle))
|
|
x0 := x + radius*float32(cos0)
|
|
y0 := y + radius*float32(sin0)
|
|
sin1, cos1 := math.Sincos(float64(endAngle))
|
|
x1 := x + radius*float32(cos1)
|
|
y1 := y + radius*float32(sin1)
|
|
|
|
p.LineTo(x0, y0)
|
|
|
|
// Calculate the control points for an approximated Bézier curve.
|
|
// See https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
|
|
l := radius * float32(math.Tan(da/4)*4/3)
|
|
var cx0, cy0, cx1, cy1 float32
|
|
if dir == Clockwise {
|
|
cx0 = x0 + l*float32(-sin0)
|
|
cy0 = y0 + l*float32(cos0)
|
|
cx1 = x1 + l*float32(sin1)
|
|
cy1 = y1 + l*float32(-cos1)
|
|
} else {
|
|
cx0 = x0 + l*float32(sin0)
|
|
cy0 = y0 + l*float32(-cos0)
|
|
cx1 = x1 + l*float32(-sin1)
|
|
cy1 = y1 + l*float32(cos1)
|
|
}
|
|
p.CubicTo(cx0, cy0, cx1, cy1, x1, y1)
|
|
}
|
|
|
|
// AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them.
|
|
// AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function.
|
|
// If the arguments are nils, AppendVerticesAndIndices returns new slices.
|
|
//
|
|
// The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
|
|
//
|
|
// The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with EvenOdd option
|
|
// in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
|
|
func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) {
|
|
// TODO: Add tests.
|
|
|
|
var base uint16
|
|
for _, seg := range p.segs {
|
|
if len(seg) < 3 {
|
|
continue
|
|
}
|
|
for i, pt := range seg {
|
|
vertices = append(vertices, ebiten.Vertex{
|
|
DstX: pt.x,
|
|
DstY: pt.y,
|
|
SrcX: 0,
|
|
SrcY: 0,
|
|
ColorR: 1,
|
|
ColorG: 1,
|
|
ColorB: 1,
|
|
ColorA: 1,
|
|
})
|
|
if i < 2 {
|
|
continue
|
|
}
|
|
indices = append(indices, base, base+uint16(i-1), base+uint16(i))
|
|
}
|
|
base += uint16(len(seg))
|
|
}
|
|
return vertices, indices
|
|
}
|