1
0
mirror of https://github.com/hajimehoshi/ebiten.git synced 2025-01-15 13:32:04 +01:00
ebiten/internal/graphicsdriver/metal/graphics.go

975 lines
29 KiB
Go
Raw Normal View History

2018-11-12 16:00:10 +01:00
// Copyright 2018 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build darwin
package metal
import (
"fmt"
"strings"
"unsafe"
2020-10-03 19:35:13 +02:00
"github.com/hajimehoshi/ebiten/v2/internal/affine"
"github.com/hajimehoshi/ebiten/v2/internal/driver"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/ca"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/mtl"
"github.com/hajimehoshi/ebiten/v2/internal/shaderir"
2018-11-12 16:00:10 +01:00
)
// #cgo CFLAGS: -x objective-c
// #cgo !ios CFLAGS: -mmacosx-version-min=10.12
// #cgo LDFLAGS: -framework Foundation
//
// #import <Foundation/Foundation.h>
//
// static void* allocAutoreleasePool() {
// return [[NSAutoreleasePool alloc] init];
// }
//
// static void releaseAutoreleasePool(void* pool) {
// [(NSAutoreleasePool*)pool release];
// }
import "C"
2018-11-12 16:00:10 +01:00
const source = `#include <metal_stdlib>
#define FILTER_NEAREST {{.FilterNearest}}
#define FILTER_LINEAR {{.FilterLinear}}
#define FILTER_SCREEN {{.FilterScreen}}
2018-11-12 16:00:10 +01:00
#define ADDRESS_CLAMP_TO_ZERO {{.AddressClampToZero}}
#define ADDRESS_REPEAT {{.AddressRepeat}}
#define ADDRESS_UNSAFE {{.AddressUnsafe}}
2018-11-12 16:00:10 +01:00
using namespace metal;
struct VertexIn {
packed_float2 position;
packed_float2 tex;
2018-11-12 16:00:10 +01:00
packed_float4 color;
};
struct VertexOut {
float4 position [[position]];
float2 tex;
float4 color;
};
vertex VertexOut VertexShader(
uint vid [[vertex_id]],
const device VertexIn* vertices [[buffer(0)]],
2018-11-12 16:00:10 +01:00
constant float2& viewport_size [[buffer(1)]]
) {
float4x4 projectionMatrix = float4x4(
float4(2.0 / viewport_size.x, 0, 0, 0),
float4(0, 2.0 / viewport_size.y, 0, 0),
2018-11-12 16:00:10 +01:00
float4(0, 0, 1, 0),
float4(-1, -1, 0, 1)
2018-11-12 16:00:10 +01:00
);
VertexIn in = vertices[vid];
VertexOut out = {
.position = projectionMatrix * float4(in.position, 0, 1),
.tex = in.tex,
2018-11-12 16:00:10 +01:00
.color = in.color,
};
return out;
}
float FloorMod(float x, float y) {
if (x < 0.0) {
return y - (-x - y * floor(-x/y));
}
return x - y * floor(x/y);
}
template<uint8_t address>
float2 AdjustTexelByAddress(float2 p, float4 source_region);
template<>
inline float2 AdjustTexelByAddress<ADDRESS_CLAMP_TO_ZERO>(float2 p, float4 source_region) {
return p;
}
template<>
inline float2 AdjustTexelByAddress<ADDRESS_REPEAT>(float2 p, float4 source_region) {
float2 o = float2(source_region[0], source_region[1]);
float2 size = float2(source_region[2] - source_region[0], source_region[3] - source_region[1]);
return float2(FloorMod((p.x - o.x), size.x) + o.x, FloorMod((p.y - o.y), size.y) + o.y);
}
template<uint8_t filter, uint8_t address>
struct ColorFromTexel;
2018-11-12 16:00:10 +01:00
2020-08-08 11:05:58 +02:00
constexpr sampler texture_sampler{filter::nearest};
template<>
struct ColorFromTexel<FILTER_NEAREST, ADDRESS_UNSAFE> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
float2 p = v.tex;
return texture.sample(texture_sampler, p);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_NEAREST, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
float2 p = AdjustTexelByAddress<address>(v.tex, source_region);
if (source_region[0] <= p.x &&
source_region[1] <= p.y &&
p.x < source_region[2] &&
p.y < source_region[3]) {
return texture.sample(texture_sampler, p);
2018-11-12 16:00:10 +01:00
}
return 0.0;
}
};
template<>
struct ColorFromTexel<FILTER_LINEAR, ADDRESS_UNSAFE> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue.
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0);
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
float2 rate = fract(p0 * source_size);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_LINEAR, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue.
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0);
p0 = AdjustTexelByAddress<address>(p0, source_region);
p1 = AdjustTexelByAddress<address>(p1, source_region);
2018-11-12 16:00:10 +01:00
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
if (p0.x < source_region[0]) {
2018-11-12 16:00:10 +01:00
c0 = 0;
c2 = 0;
}
if (p0.y < source_region[1]) {
2018-11-12 16:00:10 +01:00
c0 = 0;
c1 = 0;
}
if (source_region[2] <= p1.x) {
2018-11-12 16:00:10 +01:00
c1 = 0;
c3 = 0;
}
if (source_region[3] <= p1.y) {
2018-11-12 16:00:10 +01:00
c2 = 0;
c3 = 0;
}
float2 rate = fract(p0 * source_size);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
}
};
template<uint8_t address>
struct ColorFromTexel<FILTER_SCREEN, address> {
inline float4 Do(VertexOut v, texture2d<float> texture, constant float2& source_size, float scale, constant float4& source_region) {
const float2 texel_size = 1 / source_size;
float2 p0 = v.tex - texel_size / 2.0 / scale + (texel_size / 512.0);
float2 p1 = v.tex + texel_size / 2.0 / scale + (texel_size / 512.0);
2018-11-12 16:00:10 +01:00
float4 c0 = texture.sample(texture_sampler, p0);
float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y));
float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y));
float4 c3 = texture.sample(texture_sampler, p1);
float2 rate_center = float2(1.0, 1.0) - texel_size / 2.0 / scale;
float2 rate = clamp(((fract(p0 * source_size) - rate_center) * scale) + rate_center, 0.0, 1.0);
return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
2018-11-12 16:00:10 +01:00
}
};
2018-11-12 16:00:10 +01:00
template<bool useColorM, uint8_t filter, uint8_t address>
struct FragmentShaderImpl {
inline float4 Do(
VertexOut v,
texture2d<float> texture,
constant float2& source_size,
constant float4x4& color_matrix_body,
constant float4& color_matrix_translation,
constant float& scale,
constant float4& source_region) {
float4 c = ColorFromTexel<filter, address>().Do(v, texture, source_size, scale, source_region);
if (useColorM) {
c.rgb /= c.a + (1.0 - sign(c.a));
c = (color_matrix_body * c) + color_matrix_translation;
c *= v.color;
c.rgb *= c.a;
} else {
float4 s = v.color;
c *= float4(s.r, s.g, s.b, 1.0) * s.a;
}
c = min(c, c.a);
return c;
}
};
template<bool useColorM, uint8_t address>
struct FragmentShaderImpl<useColorM, FILTER_SCREEN, address> {
inline float4 Do(
VertexOut v,
texture2d<float> texture,
constant float2& source_size,
constant float4x4& color_matrix_body,
constant float4& color_matrix_translation,
constant float& scale,
constant float4& source_region) {
return ColorFromTexel<FILTER_SCREEN, address>().Do(v, texture, source_size, scale, source_region);
}
};
2019-02-13 15:36:45 +01:00
// Define Foo and FooCp macros to force macro replacement.
// See "6.10.3.1 Argument substitution" in ISO/IEC 9899.
#define FragmentShaderFunc(useColorM, filter, address) \
FragmentShaderFuncCp(useColorM, filter, address)
#define FragmentShaderFuncCp(useColorM, filter, address) \
fragment float4 FragmentShader_##useColorM##_##filter##_##address( \
VertexOut v [[stage_in]], \
texture2d<float> texture [[texture(0)]], \
constant float2& source_size [[buffer(2)]], \
constant float4x4& color_matrix_body [[buffer(3)]], \
constant float4& color_matrix_translation [[buffer(4)]], \
constant float& scale [[buffer(5)]], \
constant float4& source_region [[buffer(6)]]) { \
return FragmentShaderImpl<useColorM, filter, address>().Do( \
v, texture, source_size, color_matrix_body, color_matrix_translation, scale, source_region); \
}
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_REPEAT)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_REPEAT)
FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_UNSAFE)
FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_UNSAFE)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_REPEAT)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_REPEAT)
FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_UNSAFE)
FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_UNSAFE)
FragmentShaderFunc(0, FILTER_SCREEN, ADDRESS_UNSAFE)
#undef FragmentShaderFuncName
2018-11-12 16:00:10 +01:00
`
type rpsKey struct {
useColorM bool
filter driver.Filter
address driver.Address
compositeMode driver.CompositeMode
screen bool
}
type Graphics struct {
view view
2018-11-12 16:00:10 +01:00
screenRPS mtl.RenderPipelineState
rpss map[rpsKey]mtl.RenderPipelineState
2018-11-12 16:00:10 +01:00
cq mtl.CommandQueue
cb mtl.CommandBuffer
screenDrawable ca.MetalDrawable
vb mtl.Buffer
ib mtl.Buffer
images map[driver.ImageID]*Image
nextImageID driver.ImageID
shaders map[driver.ShaderID]*Shader
nextShaderID driver.ShaderID
2018-11-12 16:00:10 +01:00
src *Image
dst *Image
transparent bool
2018-11-12 16:00:10 +01:00
maxImageSize int
tmpTexture mtl.Texture
pool unsafe.Pointer
2018-11-12 16:00:10 +01:00
}
var theGraphics Graphics
2018-11-12 16:00:10 +01:00
func Get() *Graphics {
return &theGraphics
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) Begin() {
// NSAutoreleasePool is required to release drawable correctly (#847).
// https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/MTLBestPracticesGuide/Drawables.html
g.pool = C.allocAutoreleasePool()
}
func (g *Graphics) End() {
g.flushIfNeeded(false, true)
g.screenDrawable = ca.MetalDrawable{}
C.releaseAutoreleasePool(g.pool)
g.pool = nil
}
func (g *Graphics) SetWindow(window uintptr) {
// Note that [NSApp mainWindow] returns nil when the window is borderless.
// Then the window is needed to be given explicitly.
g.view.setWindow(window)
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) SetUIView(uiview uintptr) {
// TODO: Should this be called on the main thread?
g.view.setUIView(uiview)
}
func (g *Graphics) SetVertices(vertices []float32, indices []uint16) {
if g.vb != (mtl.Buffer{}) {
g.vb.Release()
}
if g.ib != (mtl.Buffer{}) {
g.ib.Release()
}
g.vb = g.view.getMTLDevice().MakeBufferWithBytes(unsafe.Pointer(&vertices[0]), unsafe.Sizeof(vertices[0])*uintptr(len(vertices)), resourceStorageMode)
g.ib = g.view.getMTLDevice().MakeBufferWithBytes(unsafe.Pointer(&indices[0]), unsafe.Sizeof(indices[0])*uintptr(len(indices)), resourceStorageMode)
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) flushIfNeeded(wait bool, present bool) {
if g.cb == (mtl.CommandBuffer{}) {
return
}
2018-11-12 16:00:10 +01:00
if present && g.screenDrawable != (ca.MetalDrawable{}) {
g.cb.PresentDrawable(g.screenDrawable)
}
g.cb.Commit()
if wait {
g.cb.WaitUntilCompleted()
}
g.cb = mtl.CommandBuffer{}
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) checkSize(width, height int) {
2018-11-12 16:00:10 +01:00
if width < 1 {
panic(fmt.Sprintf("metal: width (%d) must be equal or more than %d", width, 1))
2018-11-12 16:00:10 +01:00
}
if height < 1 {
panic(fmt.Sprintf("metal: height (%d) must be equal or more than %d", height, 1))
2018-11-12 16:00:10 +01:00
}
m := g.MaxImageSize()
2018-11-12 16:00:10 +01:00
if width > m {
panic(fmt.Sprintf("metal: width (%d) must be less than or equal to %d", width, m))
}
if height > m {
panic(fmt.Sprintf("metal: height (%d) must be less than or equal to %d", height, m))
}
}
func (g *Graphics) genNextImageID() driver.ImageID {
id := g.nextImageID
g.nextImageID++
return id
}
func (g *Graphics) InvalidImageID() driver.ImageID {
return -1
}
func (g *Graphics) genNextShaderID() driver.ShaderID {
id := g.nextShaderID
g.nextShaderID++
return id
}
func (g *Graphics) NewImage(width, height int) (driver.Image, error) {
g.checkSize(width, height)
2018-11-12 16:00:10 +01:00
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
2018-11-12 16:00:10 +01:00
PixelFormat: mtl.PixelFormatRGBA8UNorm,
Width: graphics.InternalImageSize(width),
Height: graphics.InternalImageSize(height),
StorageMode: storageMode,
Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget,
2018-11-12 16:00:10 +01:00
}
t := g.view.getMTLDevice().MakeTexture(td)
i := &Image{
id: g.genNextImageID(),
graphics: g,
width: width,
height: height,
texture: t,
}
g.addImage(i)
return i, nil
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) NewScreenFramebufferImage(width, height int) (driver.Image, error) {
g.view.setDrawableSize(width, height)
i := &Image{
id: g.genNextImageID(),
graphics: g,
width: width,
height: height,
screen: true,
}
g.addImage(i)
return i, nil
}
func (g *Graphics) addImage(img *Image) {
if g.images == nil {
g.images = map[driver.ImageID]*Image{}
}
if _, ok := g.images[img.id]; ok {
panic(fmt.Sprintf("opengl: image ID %d was already registered", img.id))
}
g.images[img.id] = img
}
func (g *Graphics) removeImage(img *Image) {
delete(g.images, img.id)
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) SetTransparent(transparent bool) {
g.transparent = transparent
}
func operationToBlendFactor(c driver.Operation) mtl.BlendFactor {
switch c {
case driver.Zero:
return mtl.BlendFactorZero
case driver.One:
return mtl.BlendFactorOne
case driver.SrcAlpha:
return mtl.BlendFactorSourceAlpha
case driver.DstAlpha:
return mtl.BlendFactorDestinationAlpha
case driver.OneMinusSrcAlpha:
return mtl.BlendFactorOneMinusSourceAlpha
case driver.OneMinusDstAlpha:
return mtl.BlendFactorOneMinusDestinationAlpha
case driver.DstColor:
return mtl.BlendFactorDestinationColor
default:
panic(fmt.Sprintf("metal: invalid operation: %d", c))
}
}
func (g *Graphics) Reset() error {
if g.cq != (mtl.CommandQueue{}) {
g.cq.Release()
g.cq = mtl.CommandQueue{}
}
2018-11-12 16:00:10 +01:00
// TODO: Release existing rpss
if g.rpss == nil {
g.rpss = map[rpsKey]mtl.RenderPipelineState{}
}
2018-11-12 16:00:10 +01:00
if err := g.view.reset(); err != nil {
return err
}
if g.transparent {
g.view.ml.SetOpaque(false)
}
2018-11-12 16:00:10 +01:00
replaces := map[string]string{
"{{.FilterNearest}}": fmt.Sprintf("%d", driver.FilterNearest),
"{{.FilterLinear}}": fmt.Sprintf("%d", driver.FilterLinear),
"{{.FilterScreen}}": fmt.Sprintf("%d", driver.FilterScreen),
"{{.AddressClampToZero}}": fmt.Sprintf("%d", driver.AddressClampToZero),
"{{.AddressRepeat}}": fmt.Sprintf("%d", driver.AddressRepeat),
"{{.AddressUnsafe}}": fmt.Sprintf("%d", driver.AddressUnsafe),
}
src := source
for k, v := range replaces {
src = strings.Replace(src, k, v, -1)
}
2018-11-12 16:00:10 +01:00
lib, err := g.view.getMTLDevice().MakeLibrary(src, mtl.CompileOptions{})
if err != nil {
return err
}
vs, err := lib.MakeFunction("VertexShader")
if err != nil {
return err
}
fs, err := lib.MakeFunction(
fmt.Sprintf("FragmentShader_%d_%d_%d", 0, driver.FilterScreen, driver.AddressUnsafe))
if err != nil {
return err
}
rpld := mtl.RenderPipelineDescriptor{
VertexFunction: vs,
FragmentFunction: fs,
}
rpld.ColorAttachments[0].PixelFormat = g.view.colorPixelFormat()
rpld.ColorAttachments[0].BlendingEnabled = true
rpld.ColorAttachments[0].DestinationAlphaBlendFactor = mtl.BlendFactorZero
rpld.ColorAttachments[0].DestinationRGBBlendFactor = mtl.BlendFactorZero
rpld.ColorAttachments[0].SourceAlphaBlendFactor = mtl.BlendFactorOne
rpld.ColorAttachments[0].SourceRGBBlendFactor = mtl.BlendFactorOne
rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld)
if err != nil {
return err
}
g.screenRPS = rps
for _, screen := range []bool{false, true} {
for _, cm := range []bool{false, true} {
for _, a := range []driver.Address{
driver.AddressClampToZero,
driver.AddressRepeat,
driver.AddressUnsafe,
} {
for _, f := range []driver.Filter{
driver.FilterNearest,
driver.FilterLinear,
} {
for c := driver.CompositeModeSourceOver; c <= driver.CompositeModeMax; c++ {
cmi := 0
if cm {
cmi = 1
}
fs, err := lib.MakeFunction(fmt.Sprintf("FragmentShader_%d_%d_%d", cmi, f, a))
if err != nil {
return err
}
rpld := mtl.RenderPipelineDescriptor{
VertexFunction: vs,
FragmentFunction: fs,
}
pix := mtl.PixelFormatRGBA8UNorm
if screen {
pix = g.view.colorPixelFormat()
}
rpld.ColorAttachments[0].PixelFormat = pix
rpld.ColorAttachments[0].BlendingEnabled = true
src, dst := c.Operations()
rpld.ColorAttachments[0].DestinationAlphaBlendFactor = operationToBlendFactor(dst)
rpld.ColorAttachments[0].DestinationRGBBlendFactor = operationToBlendFactor(dst)
rpld.ColorAttachments[0].SourceAlphaBlendFactor = operationToBlendFactor(src)
rpld.ColorAttachments[0].SourceRGBBlendFactor = operationToBlendFactor(src)
rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld)
if err != nil {
return err
}
g.rpss[rpsKey{
screen: screen,
useColorM: cm,
filter: f,
address: a,
compositeMode: c,
}] = rps
}
}
2018-11-12 16:00:10 +01:00
}
}
}
g.cq = g.view.getMTLDevice().MakeCommandQueue()
2018-11-12 16:00:10 +01:00
return nil
}
func (g *Graphics) draw(rps mtl.RenderPipelineState, dst *Image, srcs [graphics.ShaderImageNum]*Image, indexLen int, indexOffset int, uniforms []interface{}) error {
g.view.update()
rpd := mtl.RenderPassDescriptor{}
// Even though the destination pixels are not used, mtl.LoadActionDontCare might cause glitches
// (#1019). Always using mtl.LoadActionLoad is safe.
rpd.ColorAttachments[0].LoadAction = mtl.LoadActionLoad
rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore
var t mtl.Texture
if dst.screen {
if g.screenDrawable == (ca.MetalDrawable{}) {
drawable := g.view.drawable()
if drawable == (ca.MetalDrawable{}) {
return nil
}
g.screenDrawable = drawable
2018-11-12 16:00:10 +01:00
}
t = g.screenDrawable.Texture()
} else {
t = dst.texture
}
rpd.ColorAttachments[0].Texture = t
rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{}
2018-11-12 16:00:10 +01:00
if g.cb == (mtl.CommandBuffer{}) {
g.cb = g.cq.MakeCommandBuffer()
}
rce := g.cb.MakeRenderCommandEncoder(rpd)
rce.SetRenderPipelineState(rps)
// In Metal, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't
// match. Then, the Y direction must be inverted.
w, h := dst.internalSize()
rce.SetViewport(mtl.Viewport{
OriginX: 0,
OriginY: float64(h),
Width: float64(w),
Height: -float64(h),
ZNear: -1,
ZFar: 1,
})
rce.SetVertexBuffer(g.vb, 0, 0)
for i, u := range uniforms {
switch u := u.(type) {
case float32:
rce.SetVertexBytes(unsafe.Pointer(&u), unsafe.Sizeof(u), i+1)
rce.SetFragmentBytes(unsafe.Pointer(&u), unsafe.Sizeof(u), i+1)
case []float32:
rce.SetVertexBytes(unsafe.Pointer(&u[0]), unsafe.Sizeof(u[0])*uintptr(len(u)), i+1)
rce.SetFragmentBytes(unsafe.Pointer(&u[0]), unsafe.Sizeof(u[0])*uintptr(len(u)), i+1)
default:
return fmt.Errorf("metal: unexpected uniform value: %[1]v (type: %[1]T)", u)
2018-11-12 16:00:10 +01:00
}
}
2018-11-12 16:00:10 +01:00
for i, src := range srcs {
if src != nil {
rce.SetFragmentTexture(src.texture, i)
2018-11-12 16:00:10 +01:00
} else {
rce.SetFragmentTexture(mtl.Texture{}, i)
2018-11-12 16:00:10 +01:00
}
}
rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, indexLen, mtl.IndexTypeUInt16, g.ib, indexOffset*2)
rce.EndEncoding()
return nil
}
func (g *Graphics) Draw(dstID, srcID driver.ImageID, indexLen int, indexOffset int, mode driver.CompositeMode, colorM *affine.ColorM, filter driver.Filter, address driver.Address, sourceRegion driver.Region) error {
dst := g.images[dstID]
srcs := [graphics.ShaderImageNum]*Image{g.images[srcID]}
var rps mtl.RenderPipelineState
if dst.screen && filter == driver.FilterScreen {
rps = g.screenRPS
} else {
rps = g.rpss[rpsKey{
screen: dst.screen,
useColorM: colorM != nil,
filter: filter,
address: address,
compositeMode: mode,
}]
}
w, h := dst.internalSize()
sourceSize := []float32{0, 0}
if filter != driver.FilterNearest {
w, h := srcs[0].internalSize()
sourceSize[0] = float32(w)
sourceSize[1] = float32(h)
}
esBody, esTranslate := colorM.UnsafeElements()
scale := float32(0)
if filter == driver.FilterScreen {
scale = float32(dst.width) / float32(srcs[0].width)
}
uniforms := []interface{}{
[]float32{float32(w), float32(h)},
sourceSize,
esBody,
esTranslate,
scale,
[]float32{
sourceRegion.X,
sourceRegion.Y,
sourceRegion.X + sourceRegion.Width,
sourceRegion.Y + sourceRegion.Height,
},
}
if err := g.draw(rps, dst, srcs, indexLen, indexOffset, uniforms); err != nil {
2018-11-12 16:00:10 +01:00
return err
}
return nil
}
func (g *Graphics) SetVsyncEnabled(enabled bool) {
g.view.setDisplaySyncEnabled(enabled)
2018-11-12 16:00:10 +01:00
}
2020-05-08 09:49:19 +02:00
func (g *Graphics) FramebufferYDirection() driver.YDirection {
return driver.Downward
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) NeedsRestoring() bool {
2019-05-26 12:08:46 +02:00
return false
}
func (g *Graphics) IsGL() bool {
2018-11-12 16:00:10 +01:00
return false
}
func (g *Graphics) HasHighPrecisionFloat() bool {
return true
}
func (g *Graphics) MaxImageSize() int {
if g.maxImageSize == 0 {
g.maxImageSize = 4096
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
switch {
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily5_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily4_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily3_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v2):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v1):
g.maxImageSize = 4096
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v2):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v1):
g.maxImageSize = 4096
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily2_v1):
g.maxImageSize = 16384
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily1_v1):
g.maxImageSize = 8192
case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_macOS_GPUFamily1_v1):
g.maxImageSize = 16384
default:
panic("metal: there is no supported feature set")
}
}
return g.maxImageSize
}
func (g *Graphics) NewShader(program *shaderir.Program) (driver.Shader, error) {
s, err := newShader(g.view.getMTLDevice(), g.genNextShaderID(), program)
if err != nil {
return nil, err
}
g.addShader(s)
return s, nil
}
func (g *Graphics) addShader(shader *Shader) {
if g.shaders == nil {
g.shaders = map[driver.ShaderID]*Shader{}
}
if _, ok := g.shaders[shader.id]; ok {
panic(fmt.Sprintf("metal: shader ID %d was already registered", shader.id))
}
g.shaders[shader.id] = shader
}
func (g *Graphics) removeShader(shader *Shader) {
delete(g.shaders, shader.id)
}
2018-11-12 16:00:10 +01:00
type Image struct {
id driver.ImageID
graphics *Graphics
width int
height int
screen bool
texture mtl.Texture
2018-11-12 16:00:10 +01:00
}
func (i *Image) ID() driver.ImageID {
return i.id
}
func (i *Image) internalSize() (int, int) {
2018-11-12 16:00:10 +01:00
if i.screen {
return i.width, i.height
}
return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height)
2018-11-12 16:00:10 +01:00
}
func (i *Image) Dispose() {
if i.texture != (mtl.Texture{}) {
i.texture.Release()
i.texture = mtl.Texture{}
}
i.graphics.removeImage(i)
2018-11-12 16:00:10 +01:00
}
func (i *Image) IsInvalidated() bool {
// TODO: Does Metal cause context lost?
// https://developer.apple.com/documentation/metal/mtlresource/1515898-setpurgeablestate
// https://developer.apple.com/documentation/metal/mtldevicenotificationhandler
return false
}
func (i *Image) syncTexture() {
2020-09-06 09:51:44 +02:00
// Calling SynchronizeTexture is ignored on iOS (see mtl.m), but it looks like committing BliCommandEncoder
// is necessary (#1337).
if i.graphics.cb != (mtl.CommandBuffer{}) {
panic("metal: command buffer must be empty at syncTexture: flushIfNeeded is not called yet?")
}
2018-11-12 16:00:10 +01:00
cb := i.graphics.cq.MakeCommandBuffer()
bce := cb.MakeBlitCommandEncoder()
bce.SynchronizeTexture(i.texture, 0, 0)
bce.EndEncoding()
cb.Commit()
cb.WaitUntilCompleted()
2018-11-12 16:00:10 +01:00
}
func (i *Image) Pixels() ([]byte, error) {
i.graphics.flushIfNeeded(true, false)
2018-11-12 16:00:10 +01:00
i.syncTexture()
b := make([]byte, 4*i.width*i.height)
i.texture.GetBytes(&b[0], uintptr(4*i.width), mtl.Region{
Size: mtl.Size{Width: i.width, Height: i.height, Depth: 1},
}, 0)
2018-11-12 16:00:10 +01:00
return b, nil
}
func (i *Image) ReplacePixels(args []*driver.ReplacePixelsArgs) {
g := i.graphics
g.flushIfNeeded(true, false)
// If the memory is shared (e.g., iOS), texture data doen't have to be synced. Send the data directly.
if storageMode == mtl.StorageModeShared {
for _, a := range args {
i.texture.ReplaceRegion(mtl.Region{
Origin: mtl.Origin{X: a.X, Y: a.Y, Z: 0},
Size: mtl.Size{Width: a.Width, Height: a.Height, Depth: 1},
}, 0, unsafe.Pointer(&a.Pixels[0]), 4*a.Width)
}
}
// If the memory is managed (e.g., macOS), texture data cannot be sent to the destination directly because
// this requires synchronizing data between CPU and GPU. As synchronizing is inefficient, let's send the
// data to a temporary texture once, and then copy it in GPU.
w, h := i.texture.Width(), i.texture.Height()
if g.tmpTexture == (mtl.Texture{}) || w > g.tmpTexture.Width() || h > g.tmpTexture.Height() {
if g.tmpTexture != (mtl.Texture{}) {
g.tmpTexture.Release()
}
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
PixelFormat: mtl.PixelFormatRGBA8UNorm,
Width: w,
Height: h,
StorageMode: storageMode,
Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget,
}
g.tmpTexture = g.view.getMTLDevice().MakeTexture(td)
}
for _, a := range args {
g.tmpTexture.ReplaceRegion(mtl.Region{
Origin: mtl.Origin{X: a.X, Y: a.Y, Z: 0},
Size: mtl.Size{Width: a.Width, Height: a.Height, Depth: 1},
}, 0, unsafe.Pointer(&a.Pixels[0]), 4*a.Width)
}
if g.cb == (mtl.CommandBuffer{}) {
g.cb = i.graphics.cq.MakeCommandBuffer()
}
bce := g.cb.MakeBlitCommandEncoder()
for _, a := range args {
o := mtl.Origin{X: a.X, Y: a.Y, Z: 0}
s := mtl.Size{Width: a.Width, Height: a.Height, Depth: 1}
bce.CopyFromTexture(g.tmpTexture, 0, 0, o, s, i.texture, 0, 0, o)
}
bce.EndEncoding()
2018-11-12 16:00:10 +01:00
}
func (g *Graphics) DrawShader(dstID driver.ImageID, srcIDs [graphics.ShaderImageNum]driver.ImageID, offsets [graphics.ShaderImageNum - 1][2]float32, shader driver.ShaderID, indexLen int, indexOffset int, sourceRegion driver.Region, mode driver.CompositeMode, uniforms []interface{}) error {
dst := g.images[dstID]
var srcs [graphics.ShaderImageNum]*Image
for i, srcID := range srcIDs {
srcs[i] = g.images[srcID]
}
rps, err := g.shaders[shader].RenderPipelineState(g.view.getMTLDevice(), mode)
if err != nil {
return err
}
us := make([]interface{}, graphics.PreservedUniformVariablesNum+len(uniforms))
// Set the destination texture size.
dw, dh := dst.internalSize()
us[graphics.DestinationTextureSizeUniformVariableIndex] = []float32{float32(dw), float32(dh)}
// Set the source texture sizes.
usizes := make([]float32, 2*len(srcs))
for i, src := range srcs {
if src != nil {
w, h := src.internalSize()
usizes[2*i] = float32(w)
usizes[2*i+1] = float32(h)
}
}
us[graphics.TextureSizesUniformVariableIndex] = usizes
// Set the source offsets.
uoffsets := make([]float32, 2*len(offsets))
for i, offset := range offsets {
uoffsets[2*i] = offset[0]
uoffsets[2*i+1] = offset[1]
}
us[graphics.TextureSourceOffsetsUniformVariableIndex] = uoffsets
// Set the source region's origin of texture0.
uorigin := []float32{float32(sourceRegion.X), float32(sourceRegion.Y)}
us[graphics.TextureSourceRegionOriginUniformVariableIndex] = uorigin
// Set the source region's size of texture0.
ussize := []float32{float32(sourceRegion.Width), float32(sourceRegion.Height)}
us[graphics.TextureSourceRegionSizeUniformVariableIndex] = ussize
// Set the additional uniform variables.
for i, v := range uniforms {
const offset = graphics.PreservedUniformVariablesNum
us[offset+i] = v
}
if err := g.draw(rps, dst, srcs, indexLen, indexOffset, us); err != nil {
return err
}
return nil
}