ebiten/internal/mipmap/mipmap.go

311 lines
8.1 KiB
Go
Raw Normal View History

// Copyright 2018 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mipmap
import (
"fmt"
2023-04-27 17:55:10 +02:00
"image"
"math"
"github.com/hajimehoshi/ebiten/v2/internal/atlas"
2020-10-03 19:35:13 +02:00
"github.com/hajimehoshi/ebiten/v2/internal/buffered"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/restorable"
)
func canUseMipmap(imageType atlas.ImageType) bool {
switch imageType {
case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged:
return true
}
return false
}
// Mipmap is a set of buffered.Image sorted by the order of mipmap level.
// The level 0 image is a regular image and higher-level images are used for mipmap.
type Mipmap struct {
width int
height int
imageType atlas.ImageType
orig *buffered.Image
imgs map[int]imageWithDirtyFlag
}
type imageWithDirtyFlag struct {
img *buffered.Image
dirty bool
}
func New(width, height int, imageType atlas.ImageType) *Mipmap {
return &Mipmap{
width: width,
height: height,
orig: buffered.NewImage(width, height, imageType),
imageType: imageType,
2019-09-18 19:13:11 +02:00
}
}
func (m *Mipmap) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, name string, blackbg bool) (string, error) {
return m.orig.DumpScreenshot(graphicsDriver, name, blackbg)
2019-09-18 19:13:11 +02:00
}
2023-04-27 17:55:10 +02:00
func (m *Mipmap) WritePixels(pix []byte, region image.Rectangle) {
m.orig.WritePixels(pix, region)
m.markDirty()
}
func (m *Mipmap) markDirty() {
for i, img := range m.imgs {
img.dirty = true
m.imgs[i] = img
}
2019-09-18 19:27:20 +02:00
}
func (m *Mipmap) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte, region image.Rectangle) (ok bool, err error) {
2023-04-27 17:55:10 +02:00
return m.orig.ReadPixels(graphicsDriver, pixels, region)
2019-09-18 19:27:20 +02:00
}
func (m *Mipmap) DrawTriangles(srcs [graphics.ShaderSrcImageCount]*Mipmap, vertices []float32, indices []uint32, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderSrcImageCount]image.Rectangle, shader *atlas.Shader, uniforms []uint32, fillRule graphicsdriver.FillRule, canSkipMipmap bool, hint restorable.Hint) {
if len(indices) == 0 {
return
}
// Use the fast path if mipmap is not used.
if canSkipMipmap || srcs[0] == nil || !canUseMipmap(srcs[0].imageType) {
var imgs [graphics.ShaderSrcImageCount]*buffered.Image
for i, src := range srcs {
if src == nil {
continue
}
imgs[i] = src.orig
}
m.orig.DrawTriangles(imgs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, hint)
m.markDirty()
return
}
level := math.MaxInt32
for i := 0; i < len(indices); i += 3 {
idx0 := indices[i]
idx1 := indices[i+1]
idx2 := indices[i+2]
dx0 := vertices[graphics.VertexFloatCount*idx0]
dy0 := vertices[graphics.VertexFloatCount*idx0+1]
sx0 := vertices[graphics.VertexFloatCount*idx0+2]
sy0 := vertices[graphics.VertexFloatCount*idx0+3]
dx1 := vertices[graphics.VertexFloatCount*idx1]
dy1 := vertices[graphics.VertexFloatCount*idx1+1]
sx1 := vertices[graphics.VertexFloatCount*idx1+2]
sy1 := vertices[graphics.VertexFloatCount*idx1+3]
dx2 := vertices[graphics.VertexFloatCount*idx2]
dy2 := vertices[graphics.VertexFloatCount*idx2+1]
sx2 := vertices[graphics.VertexFloatCount*idx2+2]
sy2 := vertices[graphics.VertexFloatCount*idx2+3]
if l := mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1); level > l {
level = l
}
if l := mipmapLevelFromDistance(dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2); level > l {
level = l
}
if l := mipmapLevelFromDistance(dx2, dy2, dx0, dy0, sx2, sy2, sx0, sy0); level > l {
level = l
}
}
if level == math.MaxInt32 {
panic("mipmap: level must be calculated at least once but not")
}
var imgs [graphics.ShaderSrcImageCount]*buffered.Image
for i, src := range srcs {
if src == nil {
continue
}
if level != 0 {
if img := src.level(level); img != nil {
s := float32(pow2(level))
2024-08-11 15:33:21 +02:00
for i := 0; i < len(vertices); i += graphics.VertexFloatCount {
vertices[i+2] /= s
vertices[i+3] /= s
}
imgs[i] = img
continue
}
}
imgs[i] = src.orig
}
m.orig.DrawTriangles(imgs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, hint)
m.markDirty()
}
func (m *Mipmap) setImg(level int, img *buffered.Image) {
if m.imgs == nil {
m.imgs = map[int]imageWithDirtyFlag{}
}
m.imgs[level] = imageWithDirtyFlag{
img: img,
dirty: false,
}
}
func (m *Mipmap) level(level int) *buffered.Image {
if level == 0 {
panic("mipmap: level must be non-zero at level")
}
if !canUseMipmap(m.imageType) {
2024-06-30 11:56:07 +02:00
panic("mipmap: mipmap images for a screen image is not implemented yet")
}
img, ok := m.imgs[level]
if ok && !img.dirty {
return img.img
}
2024-09-12 10:36:17 +02:00
var srcW, srcH int
var src *buffered.Image
vs := make([]float32, 4*graphics.VertexFloatCount)
switch {
case level == 1:
src = m.orig
2024-09-12 10:36:17 +02:00
srcW = m.width
srcH = m.height
case level > 1:
src = m.level(level - 1)
if src == nil {
m.setImg(level, nil)
return nil
}
2024-09-12 10:36:17 +02:00
srcW = sizeForLevel(m.width, level-1)
srcH = sizeForLevel(m.height, level-1)
default:
panic(fmt.Sprintf("mipmap: invalid level: %d", level))
}
2024-09-12 08:55:27 +02:00
2024-09-12 10:36:17 +02:00
graphics.QuadVerticesFromSrcAndMatrix(vs, 0, 0, float32(srcW), float32(srcH), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1)
2024-09-12 08:55:27 +02:00
is := graphics.QuadIndices()
2024-09-12 10:36:17 +02:00
dstW := sizeForLevel(m.width, level)
dstH := sizeForLevel(m.height, level)
if dstW == 0 || dstH == 0 {
m.setImg(level, nil)
2019-09-20 22:56:34 +02:00
return nil
}
// buffered.NewImage panics with a too big size when actual allocation happens.
// 4096 should be a safe size in most environments (#1399).
// Unfortunately a precise max image size cannot be obtained here since this requires GPU access.
2024-09-12 10:36:17 +02:00
if dstW > 4096 || dstH > 4096 {
m.setImg(level, nil)
return nil
}
var s *buffered.Image
if img.img != nil {
// As s is overwritten, this doesn't have to be cleared.
s = img.img
} else {
2024-09-12 10:36:17 +02:00
s = buffered.NewImage(dstW, dstH, m.imageType)
}
2024-09-12 10:36:17 +02:00
dstRegion := image.Rect(0, 0, dstW, dstH)
srcRegion := image.Rect(0, 0, srcW, srcH)
s.DrawTriangles([graphics.ShaderSrcImageCount]*buffered.Image{src}, vs, is, graphicsdriver.BlendCopy, dstRegion, [graphics.ShaderSrcImageCount]image.Rectangle{srcRegion}, atlas.LinearFilterShader, nil, graphicsdriver.FillRuleFillAll, restorable.HintOverwriteDstRegion)
m.setImg(level, s)
2019-09-20 22:56:34 +02:00
return m.imgs[level].img
2019-09-20 22:56:34 +02:00
}
func sizeForLevel(x int, level int) int {
for i := 0; i < level; i++ {
x /= 2
if x == 0 {
return 0
}
}
return x
}
func (m *Mipmap) Deallocate() {
for _, img := range m.imgs {
if img.img == nil {
continue
}
img.img.Deallocate()
}
for k := range m.imgs {
delete(m.imgs, k)
}
m.orig.Deallocate()
}
// mipmapLevel returns an appropriate mipmap level for the given distance.
func mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1 float32) int {
const maxLevel = 6
d := (dx1-dx0)*(dx1-dx0) + (dy1-dy0)*(dy1-dy0)
s := (sx1-sx0)*(sx1-sx0) + (sy1-sy0)*(sy1-sy0)
if s == 0 {
return 0
}
scale := d / s
// Scale can be infinite when the specified scale is extremely big (#1398).
if math.IsInf(float64(scale), 0) {
return 0
}
// Scale can be zero when the specified scale is extremely small (#1398).
if scale == 0 {
return 0
}
level := 0
for scale < 0.25 {
level++
scale *= 4
}
2020-07-15 17:52:41 +02:00
if level > 0 {
// If the image can be scaled into 0 size, adjust the level. (#839)
w, h := int(sx1-sx0), int(sy1-sy0)
2020-07-15 17:52:41 +02:00
for level >= 0 {
s := 1 << uint(level)
if (w > 0 && w/s == 0) || (h > 0 && h/s == 0) {
2020-07-15 17:52:41 +02:00
level--
continue
}
break
}
if level < 0 {
// As the render source is too small, nothing is rendered.
return 0
}
}
if level > maxLevel {
level = maxLevel
2020-07-15 17:52:41 +02:00
}
return level
}
func pow2(power int) float32 {
x := 1
return float32(x << uint(power))
}